Skip to main content
Log in

Nonlinear entanglement witnesses based on continuous-variable local orthogonal observables for bipartite systems

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, a nonlinear entanglement witness criterion based on continuous-variable local orthogonal observables for bipartite states is established, which is strictly stronger than the the linear entanglement witnesses criterion introduced by Zhang et al. (Phys. Rev. Lett. 111:190501, 2013). This criterion is particularly applied to two-mode Gaussian states yielding a criterion in terms of the covariance matrix. Comparison with CCNR criterion is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Gühne, O., Tóth, G.: Entanglement detection. Phys. Rep. 474, 1–75 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  4. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Hou, J.-C.: A characterization of positive linear maps and criteria for entangled quantum states. J. Phys. A Math. Theor. 43, 385201 (2010)

    Article  ADS  Google Scholar 

  6. Qi, X.-F., Hou, J.-C.: Positive finite rank elementary operators and characterizing entanglement of states. J. Phys. A Math. Theor. 44, 215305 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  7. Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223, 1–8 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Chen, K., Wu, L.-A.: A matrix realignment method for recognizing entanglement. Quant. Inf. Comput. 3, 193–202 (2003)

    MATH  Google Scholar 

  9. Rodolph, O.: Computable cross-norm criterion for separability. Lett. Math. Phys. 70, 57–64 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  10. Gühne, O.: Characterizing entanglement via uncertainty relations. Phys. Rev. Lett. 92, 117903 (2004)

    Article  ADS  Google Scholar 

  11. Tóth, G., Gühne, O.: Entanglement detection in the stabilizer formalism. Phys. Rev. A 72, 022340 (2005)

    Article  ADS  Google Scholar 

  12. Duan, L.-M., Giedke, G., Cirac, J.I., Zoller, P.: Inseparability criterion for continuous variable systems. Phys. Rev. Lett. 84, 2722 (2000)

    Article  ADS  Google Scholar 

  13. Hillery, M., Zubairy, M.S.: Entanglement conditions for two-mode states. Phys. Rev. Lett. 96, 050503 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  14. Nha, H., Zubairy, M.S.: Uncertainty inequalities as entanglement criteria for negative partial-transpose states. Phys. Rev. Lett. 101, 130402 (2008)

    Article  ADS  Google Scholar 

  15. Shchukin, E., Vogel, W.: Inseparability criteria for continuous bipartite quantum states. Phys. Rev. Lett. 95, 230502 (2005)

    Article  ADS  Google Scholar 

  16. Simon, R.: Peres–Horodecki separability criterion for continuous variable systems. Phys. Rev. Lett. 84, 2726 (2000)

    Article  ADS  Google Scholar 

  17. Chen, X.-Y., Jiang, L.-Z., Yu, P., Tian, M.-Z.: Realignment entanglement criterion for continuous bipartite symmetric quantum states. Phys. Rev. A 89, 012332 (2014)

    Article  ADS  Google Scholar 

  18. Werner, R.F., Wolf, M.M.: Bound entangled Gaussian states. Phys. Rev. Lett. 86, 3658 (2001)

    Article  ADS  Google Scholar 

  19. DiGuglielmo, J., Samblowski, A., Hage, B., Pineda, C., Eisert, J., Schnabel, R.: Experimental unconditional preparation and detection of a continuous bound entangled state of light. Phys. Rev. Lett. 107, 240503 (2011)

    Article  ADS  Google Scholar 

  20. Zhang, C.-J., Nha, H., Zhang, Y.-S., Guo, G.-C.: Entanglement detection via tighter local uncertainty relations. Phys. Rev. A 81, 012324 (2010)

    Article  ADS  Google Scholar 

  21. Bru, D.: Characterizing entanglement. J. Math. Phys. 43, 4237–4251 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  22. Chruściński, D., Kossakowski, A.: On the structure of entanglement witnesses and new class of positive indecomposable maps. Open Syst. Inf. Dyn. 14, 275–294 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hou, J.-C., Qi, X.-F.: Constructing entanglement witnesses for infinite-dimensional systems. Phys. Rev. A 81, 062351 (2010)

    Article  ADS  Google Scholar 

  24. Tóth, G., Gühne, O.: Detecting genuine multipartite entanglement with two local measurements. Phys. Rev. Lett. 94, 060501 (2005)

    Article  ADS  Google Scholar 

  25. Yu, S., Liu, N.-L.: Entanglement detection by local orthogonal observables. Phys. Rev. Lett. 95, 150504 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  26. Hou, J.-C., Guo, Y.: Constructing entanglement witnesses for states in infinite-dimensional bipartite quantum systems. Int. J. Theor. Phys. 50, 1245–1254 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gühne, O., Mechler, M., Tóth, G., Adam, P.: Entanglement criteria based on local uncertainty relations are strictly stronger than the computable cross norm criterion. Phys. Rev. A 74, 010301(R) (2006)

    Article  Google Scholar 

  28. Zhang, C.J., Yu, S.-X., Chen, Q., Oh, C.H.: Detecting and estimating continuous-variable entanglement by local orthogonal observables. Phys. Rev. Lett. 111, 190501 (2013)

    Article  ADS  Google Scholar 

  29. Luo, S.L.: Wigner–Yanase skew information and uncertainty relations. Phys. Rev. Lett. 91, 180403 (2003)

    Article  ADS  Google Scholar 

  30. Dakić, B., Vedral, V., Brukner, C̆.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

    Article  ADS  Google Scholar 

  31. Braunstein, S.L., van Loock, P.: Quantum information with continuous variables. Rev. Mod. Phys. 77, 513 (2005)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgments

This work was completed while the first author was visiting the Institute for Quantum Computing of the University of Waterloo during the academic year 2014–2015 and she would like to thank Professor Bei Zeng for her hospitality. This work was partially supported by Natural Science Foundation of China (11171249) and Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinchuan Hou.

Appendix

Appendix

Here, we give our proofs of Theorems 2 and 4 and provide details of some calculations in the main text. Firstly, we list several properties of the Weyl operators that will be used:

$$\begin{aligned} {\left\{ \begin{array}{ll}D(\lambda _1)D(\lambda _2)=\mathrm{exp }\left( \frac{\lambda _1\lambda _2^*-\lambda _1^*\lambda _2}{2}\right) D(\lambda _1+\lambda _2);\\ \mathrm{Tr}(D(\lambda ))=\pi \delta ^{(2)}(\lambda );\\ D^\dag (\lambda )=D(-\lambda ).\end{array}\right. } \end{aligned}$$
(20)

Assume that \(\{G(\lambda )\}\) and \(\{\tilde{G}(\lambda )\}\) are any two CVLOOs for subsystems A and B, respectively.

By Lemma 1, we have

$$\begin{aligned} \begin{aligned}F_2=&\int \langle G(\lambda )\otimes I-I\otimes \tilde{G}(\lambda )\rangle _{\rho _{ AB }}^2\mathrm{d^2}\lambda \\ =&\int \left( \langle G(\lambda )\rangle _{\rho _A}-\langle \tilde{G}(\lambda )\rangle _{\rho _B}\right) ^2\mathrm{d^2}\lambda \\ =&\int \langle G(\lambda )\rangle _{\rho _A}^2\mathrm{d^2}\lambda -2\int \langle G(\lambda )\rangle _{\rho _A}\langle \tilde{G}(\lambda )\rangle _{\rho _B}\mathrm{d^2}\lambda +\int \langle \tilde{G}(\lambda )\rangle ^2_{\rho _B}\mathrm{d^2}\lambda \\ =&\mathrm{Tr}(\rho _A^2)+\mathrm{Tr}(\rho _B^2)-2\int \langle G(\lambda )\rangle _{\rho _A}\langle \tilde{G}(\lambda )\rangle _{\rho _B}\mathrm{d^2}\lambda .\end{aligned} \end{aligned}$$

So

$$\begin{aligned} \begin{aligned} F(\rho _{ AB })=\,\,&1-\frac{1}{2}\left( \mathrm{Tr}(\rho _A^2)+\mathrm{Tr}(\rho _B^2)\right) +\int \langle G(\lambda )\rangle _{\rho _A}\langle \tilde{G}(\lambda )\rangle _{\rho _B}\mathrm{d^2}\lambda \\&-\int \langle G(\lambda )\otimes \tilde{G}(\lambda )\rangle _{\rho _{ AB }}\mathrm{d^2}\lambda \\&-\frac{1}{2}\left( 2-\mathrm{Tr}(\rho _A^2)-\mathrm{Tr}(\rho _B^2)-2\sqrt{1-\mathrm{Tr}(\rho _A^2})\sqrt{1-\mathrm{Tr}(\rho _B^2})\right) \\ =&\int \langle G(\lambda )\rangle _{\rho _A}\langle \tilde{G}(\lambda )\rangle _{\rho _B}\mathrm{d^2}\lambda -\int \langle G(\lambda )\otimes \tilde{G}(\lambda )\rangle _{\rho _{ AB }}\mathrm{d^2}\lambda \\&+\sqrt{1-\mathrm{Tr}(\rho _A^2})\sqrt{1-\mathrm{Tr}(\rho _B^2}). \end{aligned} \end{aligned}$$

This implies that \(F(\rho _{ AB })\ge 0\) if and only if

$$\begin{aligned}&\left( 1-\mathrm{Tr}(\rho _A^2))(1-\mathrm{Tr}(\rho _B^2)\right) \nonumber \\&\quad \ge \left[ \int \langle G(\lambda )\otimes \tilde{G}(\lambda )\rangle _{\rho _{ AB }}\mathrm{d^2}\lambda -\int \langle G(\lambda )\rangle _{\rho _A}\langle \tilde{G}(\lambda )\rangle _{\rho _B}\mathrm{d^2}\lambda \right] ^2, \end{aligned}$$
(21)

that is, the inequalities in Theorems 2 and 4 are equivalent. In the following, we will give a proof of Theorem 4, and then, Theorem 2 follows.

Proof of Theorem 4

Since \(\rho _{ AB }\) is separable, it is the trace-norm limit of the states of the form

$$\begin{aligned} \rho _n=\sum _{i=1}^{k_n}p_{i,n}\rho _{i,n}^A\otimes \rho _{i,n}^B, \end{aligned}$$

where \(\rho _{i,n}^A\) and \(\rho _{i,n}^B\) are, respectively, states of subsystems A and B, \(\{p_{i,n}\}\) is a probability distribution. Then,

$$\begin{aligned} \rho _A=\lim _{n\rightarrow \infty }\sum _{i=1}^{k_n}p_{i,n}\rho _{i,n}^A=\lim _{n\rightarrow \infty }(\rho _n)_A\ \ \mathrm{and}\ \ \rho _B=\lim _{n\rightarrow \infty }\sum _{i=1}^{k_n}p_{i,n}\rho _{i,n}^B=\lim _{n\rightarrow \infty }(\rho _n)_B.\nonumber \\ \end{aligned}$$
(22)

We claim that Ineq. (21) holds for \(\rho _n\), that is,

$$\begin{aligned} \left( 1-\mathrm{Tr}((\rho _n)_A^2))(1-\mathrm{Tr}((\rho _n)_B^2)\right) \ge \left[ \int \left( \langle G(\lambda )\otimes \tilde{G}(\lambda )\rangle _{\rho _n}-\langle G(\lambda )\rangle _{(\rho _n)_A}\langle \tilde{G}(\lambda )\rangle _{(\rho _n)_B}\right) \mathrm{d^2}\lambda \right] ^2. \end{aligned}$$
(21′)

For sake of simplicity, we write \(\rho _n=\sum _{i=1}^mp_i\rho _i^A\otimes \rho _i^B\). Then,

$$\begin{aligned} \begin{aligned}&\langle G(\lambda )\otimes \tilde{G}(\lambda )\rangle _{\rho _n}-\langle G(\lambda )\rangle _{(\rho _n)_A}\langle \tilde{G}(\lambda )\rangle _{(\rho _n)_B}\\&\quad =\sum _{i=1}^mp_i\langle G(\lambda )\rangle _{\rho _i^A}\langle \tilde{G}(\lambda )\rangle _{\rho _i^B}-\sum _{i,j=1}^mp_ip_j\langle G(\lambda )\rangle _{\rho _i^A}\langle \tilde{G}(\lambda )\rangle _{\rho _j^B}\\&\quad = \sum _{i=1}^mp_i\langle G(\lambda )-\sum _{j=1}^mp_j\langle G(\lambda )\rangle _{\rho _j^A}\rangle _{\rho _i^A}\langle \tilde{G}(\lambda )-\sum _{j=1}^mp_j\langle \tilde{G}(\lambda )\rangle _{\rho _j^B}\rangle _{\rho _i^B}\\&\quad \le \left( \sum _{i=1}^mp_i\langle G(\lambda )-\sum _{j=1}^mp_j\langle G(\lambda )\rangle _{\rho _j^A}\rangle _{\rho _i^A}^2\right) ^{\frac{1}{2}}\\&\quad \times \left( \sum _{i=1}^mp_i\langle \tilde{G}(\lambda )-\sum _{j=1}^mp_j\langle \tilde{G}(\lambda )\rangle _{\rho _j^B}\rangle _{\rho _i^B}^2\right) ^{\frac{1}{2}}, \end{aligned} \end{aligned}$$

where the last inequality is due to Cauchy–Schwarz inequality. So

$$\begin{aligned}&\left[ \int \left( \langle G(\lambda )\otimes \tilde{G}(\lambda )\rangle _{\rho _n}-\langle G(\lambda )\rangle _{(\rho _n)_A}\langle \tilde{G}(\lambda )\rangle _{(\rho _n)_B}\right) \mathrm{d^2}\lambda \right] ^2\nonumber \\&\quad \le \left[ \int \left( \sum _{i=1}^mp_i\langle G(\lambda )-\sum _{j=1}^mp_j\langle G(\lambda )\rangle _{\rho _j^A}\rangle _{\rho _i^A}^2\right) ^{\frac{1}{2}}\right. \nonumber \\&\qquad \left. \cdot \,\left( \sum _{i=1}^mp_i\langle \tilde{G}(\lambda )-\sum _{j=1}^mp_j\langle \tilde{G}(\lambda )\rangle _{\rho _j^B}\rangle _{\rho _i^B}^2\right) ^{\frac{1}{2}}\mathrm{d^2}\lambda \right] ^2\\&\quad \le \left[ \int \sum _{i=1}^mp_i\langle G(\lambda )-\sum _{j=1}^mp_j\langle G(\lambda )\rangle _{\rho _j^A}\rangle _{\rho _i^A}^2\mathrm{d^2}\lambda \right] \nonumber \\&\qquad \cdot \,\left[ \int \sum _{i=1}^mp_i\langle \tilde{G}(\lambda )-\sum _{j=1}^mp_j\langle \tilde{G}(\lambda )\rangle _{\rho _j^B}\rangle _{\rho _i^B}^2\mathrm{d^2}\lambda \right] .\nonumber \end{aligned}$$
(23)

Thus, if we can prove that the inequalities

$$\begin{aligned} \int \sum _{i=1}^mp_i\langle G(\lambda )-\sum _{j=1}^mp_j\langle G(\lambda )\rangle _{\rho _j^A}\rangle _{\rho _i^A}^2\mathrm{d^2}\lambda \le 1-\mathrm{Tr}((\rho _n)_A^2) \end{aligned}$$
(24)

and

$$\begin{aligned} \int \sum _{i=1}^mp_i\langle \tilde{G}(\lambda )-\sum _{j=1}^mp_j\langle \tilde{G}(\lambda )\rangle _{\rho _j^B}\rangle _{\rho _i^B}^2\mathrm{d^2}\lambda \le 1-\mathrm{Tr}((\rho _n)_B^2) \end{aligned}$$
(25)

hold, then Ineqs. (23)–(25) imply that Ineq. (21\(^\prime \)) is true.

In fact, as \(\mathrm{Tr}(\sigma ^2)\le 1\) for any states \(\sigma \), by Lemma 1 we have

$$\begin{aligned}&\int \sum _{i=1}^mp_i\langle G(\lambda )-\sum _{j=1}^np_j\langle G(\lambda )\rangle _{\rho _j^A}\rangle _{\rho _i^A}^2\mathrm{d^2}\lambda \\&\quad =\int \sum _{i=1}^mp_i\langle G(\lambda )-\langle G(\lambda )\rangle _{(\rho _n)^A}\rangle _{\rho _i^A}^2\mathrm{d^2}\lambda \\&\quad =\int \sum _{i=1}^mp_i \left[ \langle G(\lambda )\rangle _{\rho _i^A}^2-2\langle G(\lambda )\rangle _{(\rho _n)^A}\langle G(\lambda )\rangle _{\rho _i^A}+\langle G(\lambda )\rangle _{(\rho _n)^A}^2\right] \mathrm{d^2}\lambda \\&\quad =\int \sum _{i=1}^mp_i \langle G(\lambda )\rangle _{\rho _i^A}^2\mathrm{d^2}\lambda +\int \sum _{i=1}^mp_i\langle G(\lambda )\rangle _{(\rho _n)^A}^2\mathrm{d^2}\lambda \\&\qquad -\,2\int \sum _{i=1}^mp_i\langle G(\lambda )\rangle _{(\rho _n)^A}\langle G(\lambda )\rangle _{\rho _i^A}\mathrm{d^2}\lambda \\&\quad =\int \sum _{i=1}^mp_i \langle G(\lambda )\rangle _{\rho _i^A}^2\mathrm{d^2}\lambda +\int \langle G(\lambda )\rangle _{(\rho _n)^A}^2\mathrm{d^2}\lambda \\&\qquad -\,2\int \langle G(\lambda )\rangle _{(\rho _n)^A}\sum _{i=1}^mp_i\langle G(\lambda )\rangle _{\rho _i^A}\mathrm{d^2}\lambda \\&\quad =\int \sum _{i=1}^mp_i \langle G(\lambda )\rangle _{\rho _i^A}^2\mathrm{d^2}\lambda -\int \langle G(\lambda )\rangle _{(\rho _n)^A}^2\mathrm{d^2}\lambda \\&\quad =\sum _{i=1}^mp_i\int \langle G(\lambda )\rangle _{\rho _i^A}^2\mathrm{d^2}\lambda -\mathrm{Tr}((\rho _n)_A^2)\\&\quad =\sum _{i=1}^mp_i\mathrm{Tr}((\rho _i)_A^2)-\mathrm{Tr}((\rho _n)_A^2)\le 1-\mathrm{Tr}((\rho _n)_A^2). \end{aligned}$$

That is, Ineq. (24) holds. Similarly, one can check that Ineq. (25) is also true. Hence, Ineq. (21\(^\prime \)) holds.

Now, combining Ineq. (21\(^\prime \)) and Eq. (22), one can easily check that Ineq. (21) holds, completing the proof of the theorem. \(\square \)

Recall that for any bipartite state \(\rho _{ AB }\), its characteristic function is \(\chi (\lambda _1,\lambda _2)=\mathrm{Tr}(\rho _{ AB } D_1(\lambda _1)\otimes D_2(\lambda _2))\) and its Wigner function is \(W(\alpha _1,\alpha _2)=\frac{1}{\pi ^4}\int \mathrm{exp}[\sum _{i=1}^2(\lambda _i^*\alpha _i-\lambda _i\alpha _i^*)] \chi (\lambda _1,\lambda _2)\mathrm{d^2}\lambda _1\mathrm{d^2}\lambda _2.\) So

$$\begin{aligned} \rho _{ AB }= & {} \frac{1}{\pi ^{2}}\int \mathrm{Tr}(\rho _{ AB }D_1(\lambda _1)\otimes D_2(\lambda _2))D_1(-\lambda _1)\otimes D_2(-\lambda _2)\mathrm{d^{2}}\lambda _1\mathrm{d^2}\lambda _2\nonumber \\= & {} \frac{1}{\pi ^{2}}\int W(\alpha _1,\alpha _2)\mathrm{exp}\left[ \sum _{i=1}^2(\lambda _i\alpha _i^*-\lambda _i^*\alpha _i)\right] D_1(-\lambda _1)\otimes D_2(-\lambda _2)\prod _{i=1}^2\mathrm{d^{2}}\lambda _i\mathrm{d^2}\alpha _i\nonumber \\= & {} \frac{1}{\pi ^{2}}\int W(\alpha _1,\alpha _2)\mathrm{exp}\left[ \sum _{i=1}^2(\lambda _i^*\alpha _i-\lambda _i\alpha _i^*)\right] D_1(\lambda _1)\otimes D_2(\lambda _2)\prod _{i=1}^2\mathrm{d^{2}}\lambda _i\mathrm{d^2}\alpha _i.\nonumber \\ \end{aligned}$$
(26)

Then,

$$\begin{aligned} {\left\{ \begin{array}{ll}\rho _A=\mathrm{Tr}_B(\rho _{ AB })=\frac{1}{\pi }\int W(\alpha _1,\alpha _2)\mathrm{exp}(\lambda _1^*\alpha _1-\lambda _1\alpha _1^*)D_1(\lambda _1)\mathrm{d^{2}}\lambda _1\mathrm{d^2}\alpha _1\mathrm{d^2}\alpha _2,\\ \rho _B=\mathrm{Tr}_A(\rho _{ AB })=\frac{1}{\pi }\int W(\alpha _1,\alpha _2)\mathrm{exp}(\lambda _2^*\alpha _2-\lambda _2\alpha _2^*)D_2(\lambda _2)\mathrm{d^{2}}\lambda _2\mathrm{d^2}\alpha _1\mathrm{d^2}\alpha _2.\end{array}\right. } \end{aligned}$$
(27)

It follows that

$$\begin{aligned} {\left\{ \begin{array}{ll} \mathrm{Tr}(\rho _A^2)=\pi \int W(\alpha _1,\alpha _2)W(\alpha _1,\beta _2)\mathrm{d^2}\alpha _1\mathrm{d^2}\alpha _2\mathrm{d^2}\beta _2; \\ \mathrm{Tr}(\rho _B^2)=\pi \int W(\alpha _1,\alpha _2)W(\beta _1,\alpha _2)\mathrm{d^2}\alpha _1\mathrm{d^2}\alpha _2\mathrm{d^2}\beta _1. \end{array}\right. } \end{aligned}$$
(28)

Here, we have used the relation Eq. (20) and the integral \(\int \mathrm{exp}(\lambda ^*z-\lambda z^*)\mathrm{d^2}\lambda =\pi ^2\delta ^{(2)}(z)\).

Now let

$$\begin{aligned} \{G(\lambda )\}=\{{\mathcal {G}}(\lambda )\}\ \ \mathrm{and}\ \ \{\tilde{G}(\lambda )\}=\left\{ \sqrt{|\mu _1^2-\mu _2^2|} {\mathcal {G}}(-\mu _1\lambda -\mu _2\lambda ^*)\right\} , \end{aligned}$$

where \(\mu _1\) and \(\mu _2\) are any two real numbers with \(\mu _1\not =\pm \mu _2\). Here, \(\{{\mathcal {G}}(\lambda )\}\) are defined as in Eq. (1). By Eq. (20), it is easy to check that

$$\begin{aligned}&\mathrm{Tr}({\mathcal {G}}(-\mu _1\lambda -\mu _2\lambda ^*){\mathcal {G}}(-\mu _1\lambda ^\prime -\mu _2\lambda ^{\prime *}))\\&\quad = \delta ^{(2)}(\mu _1(\lambda -\lambda ^\prime )+\mu _2(\lambda ^*-\lambda ^{\prime *}))\\&\quad = \frac{1}{|\mu _1^2-\mu _2^2|}\delta ^{(2)}(\lambda -\lambda ^\prime ), \end{aligned}$$

and so \(\{{\mathcal {G}}(\lambda )\}\) and \(\{\sqrt{|\mu _1^2-\mu _2^2|}{\mathcal {G}}(-\mu _1\lambda -\mu _2\lambda ^*)\}\) are two CVLOOs.

Now let us prove Eq. (9) in the main text by calculating \(F_2(\mu _1,\mu _2)=\int \langle G(\lambda )\otimes I-I\otimes \tilde{G}(\lambda )\rangle _{\rho _{ AB }}^2\mathrm{d^2}\lambda \). Since

$$\begin{aligned}&\rho _{ AB }(G(\lambda )\otimes I-I\otimes \tilde{G}(\lambda ))= \rho _{ AB }({\mathcal {G}}(\lambda )\otimes I\\&\qquad -\,\sqrt{|\mu _1^2-\mu _2^2|}I\otimes {{\mathcal {G}}}(-\mu _1\lambda -\mu _2\lambda ^*))\\&\quad =\rho _A{\mathcal {G}}(\lambda )-\sqrt{|\mu _1^2-\mu _2^2|}\rho _B{\mathcal {G}}(-\mu _1\lambda -\mu _2\lambda ^*), \end{aligned}$$

by Eq. (27), we have

$$\begin{aligned}&F_2(\mu _1,\mu _2) \\&\quad =\int _{{Re}\lambda >0}\left[ \mathrm{Tr}\left( \rho _A\frac{D(\lambda )+D^\dag (\lambda )}{\sqrt{2\pi }}\right) -\sqrt{|\mu _1^2-\mu _2^2|}\rho _B\mathrm{Tr}\right. \\&\qquad \left. \left( \rho _B\frac{D(-\mu _1\lambda -\mu \lambda ^*)+D^\dag (-\mu _1\lambda -\mu \lambda ^*)}{\sqrt{2\pi }}\right) \right] ^2\mathrm{d^2}\lambda \\&\qquad +\,\int _{{Re}\lambda <0}\left[ \mathrm{Tr}(\rho _A\frac{D(\lambda )-D^\dag (\lambda )}{i\sqrt{2\pi }}) -\sqrt{|\mu _1^2-\mu _2^2|}\rho _B\mathrm{Tr}\right. \\&\qquad \left. \left( \rho _B\frac{D(-\mu _1\lambda -\mu \lambda ^*)-D^\dag (-\mu _1\lambda -\mu \lambda ^*)}{i\sqrt{2\pi }}\right) \right] ^2\mathrm{d^2}\lambda \\&\quad =\frac{1}{2\pi }\int _{{Re}\lambda >0}\left[ \int W(\alpha _1,\alpha _2)e^{\lambda _1\wedge \alpha _1}(\delta ^{(2)}(\lambda _1+\lambda )+\delta ^{(2)}(\lambda _1-\lambda ))\mathrm{d^2}\lambda _1\mathrm{d^2}\alpha _1\mathrm{d^2}\alpha _2\right. \\&\qquad -\,\sqrt{|\mu _1^2-\mu _2^2|}\cdot \int W(\alpha _1,\alpha _2)e^{\lambda _2\wedge \alpha _2} (\delta ^{(2)}(\lambda _2-\mu _1\lambda -\mu _2\lambda ^*)\\&\qquad \left. +\,\delta ^{(2)}(\lambda _2+\mu _1\lambda +\mu _2\lambda ^*))\mathrm{d^2}\lambda _2\mathrm{d^2}\alpha _1\mathrm{d^2}\alpha _2\right] ^2\mathrm{d^2}\lambda \\&\qquad -\,\frac{1}{2\pi }\int _{{Re}\lambda <0}\left[ \int W(\alpha _1,\alpha _2)e^{\lambda _1\wedge \alpha _1}(\delta ^{(2)}(\lambda _1+\lambda )-\delta ^{(2)}(\lambda _1-\lambda ))\mathrm{d^2}\lambda _1\mathrm{d^2}\alpha _1\mathrm{d^2}\alpha _2\right. \\&\qquad -\,\sqrt{|\mu _1^2-\mu _2^2|}\cdot \int W(\alpha _1,\alpha _2)e^{\lambda _2\wedge \alpha _2} (\delta ^{(2)}(\lambda _2-\mu _1\lambda -\mu _2\lambda ^*)\\&\qquad \left. -\,\delta ^{(2)}(\lambda _2+\mu _1\lambda +\mu _2\lambda ^*))\mathrm{d^2}\lambda _2\mathrm{d^2}\alpha _1\mathrm{d^2}\alpha _2\right] ^2\mathrm{d^2}\lambda , \end{aligned}$$

as desired, where \(e^{\lambda \wedge \alpha }=e^{\lambda ^*\alpha -\lambda \alpha ^*}\).

Assume that \(\rho _{ AB }\) is any two-mode Gaussian state. The Wigner function of \(\rho _{ AB }\) is

$$\begin{aligned} W(\alpha _1,\alpha _2)=\frac{1}{4\pi ^2\sqrt{\mathrm{Det}{\mathcal {V}}}}\mathrm{exp}\left( \frac{-\xi {\mathcal {V}}^{-1}\xi ^{\mathrm{T}}}{2}\right) , \end{aligned}$$
(29)

where \(\mathcal {V}\) is the standard covariance matrix given by Eq. (15) in the main text, \(\xi =(x_1,p_1,x_2,p_2)\) is the four-dimensional real vector and \(\alpha _i=x_i+ip_i\).

It is easy to calculate \(\mathrm{Det}{\mathcal {V}}=(ab-c_1^2)(ab-c_2^2)\) and

$$\begin{aligned} \xi {\mathcal {V}}^{-1}\xi ^{\mathrm{T}}= & {} \frac{1}{\mathrm{Det}{\mathcal {V}}}\left[ \left( ab-c_2^2\right) \left( bx_1^2-2c_1x_1x_2+ax_2^2\right) \right. \\&\left. +\,\left( ab-c_1^2\right) \left( bp_1^2-2c_2p_1p_2+ap_2^2\right) \right] . \end{aligned}$$

Substituting this Gaussian state Wigner function (29) into (28) and using the following Gaussian functional integral formula six times:

$$\begin{aligned} \int _{-\infty }^{+\infty }\mathrm{exp}(-ax^2+bx+c)\mathrm{d}x=\sqrt{\frac{\pi }{a}}\mathrm{exp}\left( \frac{b^2}{4a}+c\right) ,\ \ a>0, \end{aligned}$$

one can get

$$\begin{aligned} \mathrm{Tr}\left( \rho _A^2\right) =\frac{1}{4a}\ \ \mathrm{and}\ \ \mathrm{Tr}(\rho _B^2)=\frac{1}{4b}. \end{aligned}$$

Finally, let us prove Eq. (16). For \(F_2(\mu _1,\mu _2)\), one can obtain

$$\begin{aligned}&\int W(\alpha _1,\alpha _2)e^{\lambda _1\wedge \alpha _1}(\delta ^{(2)}(\lambda _1+\lambda )\pm \delta ^{(2)}(\lambda _1-\lambda ))\mathrm{d^2}\lambda _1\mathrm{d^2}\alpha _1\mathrm{d^2}\alpha _2\\&\quad =\int e^{-2a|\lambda _1|^2}(\delta ^{(2)}(\lambda _1+\lambda )\pm \delta ^{(2)}(\lambda _1-\lambda ))\mathrm{d^2}\lambda _1 \end{aligned}$$

and

$$\begin{aligned}&\int W(\alpha _1,\alpha _2)e^{\lambda _2\wedge \alpha _2} \left( \delta ^{(2)}(\lambda _2-\mu _1\lambda -\mu _2\lambda ^*)\!\pm \!\delta ^{(2)}(\lambda _2+\mu _1\lambda +\mu _2\lambda ^*)\right) \mathrm{d^2}\lambda _2\mathrm{d^2}\alpha _1\mathrm{d^2}\alpha _2\\&\quad =\int e^{-2b|\lambda _2|^2}(\delta ^{(2)}(\lambda _1-\mu _1\lambda -\mu _2\lambda ^*)\pm \delta ^{(2)}(\lambda _1+\mu _1\lambda +\mu _2\lambda ^*))\mathrm{d^2}\lambda _2. \end{aligned}$$

So

$$\begin{aligned}&2\pi F_2(\mu _1,\mu _2)\\&\quad =\int _{{Re}\lambda >0}\left[ \int e^{-2a|\lambda _1|^2}\left( \delta ^{(2)}(\lambda _1+\lambda )+\delta ^{(2)}(\lambda _1-\lambda )\right) \mathrm{d^2}\lambda _1\right. \\&\qquad \left. -\,\sqrt{|\mu _1^2-\mu _2^2|} e^{-2b|\lambda _2|^2}\left( \delta ^{(2)}(\lambda _1-\mu _1\lambda -\mu _2\lambda ^*)+\delta ^{(2)}(\lambda _1+\mu _1\lambda +\mu _2\lambda ^*)\right) \mathrm{d^2}\lambda _2\right] ^2\mathrm{d^2}\lambda \\&\qquad -\,\int _{{Re}\lambda <0}\left[ \int e^{-2a|\lambda _1|^2}\left( \delta ^{(2)}(\lambda _1+\lambda )-\delta ^{(2)}(\lambda _1-\lambda )\right) \mathrm{d^2}\lambda _1\right. \\&\qquad \left. -\,\sqrt{|\mu _1^2-\mu _2^2|} e^{-2b|\lambda _2|^2}\left( \delta ^{(2)}(\lambda _1-\mu _1\lambda -\mu _2\lambda ^*)-\delta ^{(2)}(\lambda _1+\mu _1\lambda +\mu _2\lambda ^*)\right) \mathrm{d^2}\lambda _2\right] ^2\mathrm{d^2}\lambda \\&\quad =\int _{{Re}\lambda >0}\left[ 2e^{-2a|\lambda |^2}-2\sqrt{|\mu _1^2-\mu _2^2|}e^{-2b|\mu _1\lambda +\mu _2\lambda ^*|^2}\right] ^2\mathrm{d^2}\lambda \\&\quad =2\pi \left[ \frac{1}{4a}+\frac{1}{4b}-\sqrt{\frac{|\mu _1^2-\mu _2^2|}{(a+b(\mu _1+\mu _2)^2)(a+b(\mu _1-\mu _2)^2)}}\right] , \end{aligned}$$

that is,

$$\begin{aligned} F_2(\mu _1,\mu _2)=\frac{1}{4a}+\frac{1}{4b}-\sqrt{\frac{|\mu _1^2-\mu _2^2|}{(a+b(\mu _1+\mu _2)^2)(a+b(\mu _1-\mu _2)^2)}}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, X., Hou, J. Nonlinear entanglement witnesses based on continuous-variable local orthogonal observables for bipartite systems. Quantum Inf Process 15, 741–759 (2016). https://doi.org/10.1007/s11128-015-1156-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1156-0

Keywords