Skip to main content
Log in

Determination of locally perfect discrimination for two-qubit unitary operations

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In the study of local discrimination for multipartite unitary operations, Duan et al. (Phys Rev Lett 100(2):020503, 2008) exhibited an ingenious expression: Any two different unitary operations \(U_1\) and \(U_2\) are perfectly distinguishable by local operations and classical communication in the single-run scenario if and only if 0 is in the local numerical range of \(U_1^\dag U_2\). However, how to determine when 0 is in the local numerical range remains unclear. So it is generally hard to decide the local discrimination of nonlocal unitary operations with a single run. In this paper, for two-qubit diagonal unitary matrices V and their local unitary equivalent matrices, we present a necessary and sufficient condition for determining whether the local numerical range is a convex set or not. The result can be used to easily judge the locally perfect distinguishability of any two unitary operations \(U_1\) and \(U_2\) satisfying \(U_1^\dag U_2=V\). Moreover, we design the corresponding protocol of local discrimination. Meanwhile, an interesting phenomenon is discovered: Under certain conditions with a single run, \(U_1\) and \(U_2\) such that \(U_1^\dag U_2=V\) are locally distinguishable with certainty if and only if they are perfectly distinguishable by global operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sacchi, M.F.: Optimal discrimination of quantum operations. Phys. Rev. A 71(6), 062340 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  2. Wang, G.M., Ying, M.S.: Unambiguous discrimination among quantum operations. Phys. Rev. A 73(4), 042301 (2006)

    Article  ADS  Google Scholar 

  3. Duan, R.Y., Feng, Y., Ying, M.S.: Perfect distinguishability of quantum operations. Phys. Rev. Lett. 103(21), 210501 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  4. Ji, Z.F., Feng, Y., Duan, R.Y., Ying, M.S.: Identification and distance measures of measurement apparatus. Phys. Rev. Lett. 96(20), 200401 (2006)

    Article  ADS  Google Scholar 

  5. Sedlak, M., Ziman, M.: Optimal single-shot strategies for discrimination of quantum measurements. Phys. Rev. A 90(5), 052312 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  6. Mikova, M., Sedlak, M., Straka, I., Micuda, M., Ziman, M., Jezek, M., Dusek, M., Fiurasek, J.: Optimal entanglement-assisted discrimination of quantum measurements. Phys. Rev. A 90(2), 022317 (2014)

    Article  ADS  Google Scholar 

  7. Cao, T.Q., Gao, F., Zhang, Z.C., Yang, Y.H., Wen, Q.Y.: Perfect discrimination of projective measurements with the rank of all projectors being one. Quantum Inf. Process. 14, 2645–2656 (2015)

    Article  ADS  Google Scholar 

  8. Piani, M., Watrous, J.: All entangled states are useful for channel discrimination. Phys. Rev. Lett. 102(25), 250501 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  9. Matthews, W., Piani, M., Watrous, J.: Entanglement in channel discrimination with restricted measurements. Phys. Rev. A 82(3), 032302 (2010)

    Article  ADS  Google Scholar 

  10. Childs, A.M., Preskill, J., Renes, J.: Quantum information and precision measurement. J. Mod. Opt. 47(2–3), 155–176 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  11. Acín, A.: Statistical distinguishability between unitary operations. Phys. Rev. Lett. 87(17), 177901 (2001)

    Article  ADS  Google Scholar 

  12. D’Ariano, G.M., Presti, P.L., Paris, M.G.A.: Using entanglement improves the precision of quantum measurements. Phys. Rev. Lett. 87(27), 270404 (2001)

    Article  Google Scholar 

  13. Chefles, A., Sasaki, M.: Retrodiction of generalized measurement outcomes. Phys. Rev. A 67(3), 032112 (2003)

    Article  ADS  Google Scholar 

  14. Duan, R.Y., Feng, Y., Ying, M.S.: Entanglement is not necessary for perfect discrimination between unitary operations. Phys. Rev. Lett. 98(10), 100503 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  15. Chefles, A., Kitagawa, A., Takeoka, M., Sasaki, M., Twamley, J.: Unambiguous discrimination among oracle operators. J. Phys. A Math. Theor. 40, 10183–10217 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Wu, X.D., Duan, R.Y.: Exact quantum search by parallel unitary discrimination schemes. Phys. Rev. A 78(1), 012303 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  17. Chiribella, G., DAriano, G.M., Perinotti, P.: Quantum circuit architecture. Phys. Rev. Lett. 101(6), 060401 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  18. Zhou, X.F., Zhang, Y.S., Guo, G.C.: Unitary transformations can be distinguished locally. Phys. Rev. Lett. 99(17), 170401 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  19. Duan, R.Y., Feng, Y., Ying, M.S.: Local distinguishability of multipartite unitary operations. Phys. Rev. Lett. 100(2), 020503 (2008)

    Article  ADS  Google Scholar 

  20. Li, L.Z., Qiu, D.W.: Local entanglement is not necessary for perfect discrimination between unitary operations acting on two qudits by local operations and classical communication. Phys. Rev. A 77(3), 032337 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  21. Gawron, P., Puchała, Z., Miszczak, J.A., Skowronek, Ł., Życzkowski, K.: Restricted numerical range: a versatile tool in the theory of quantum information. J. Math. Phys. 51(10), 102204 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  22. Puchała, Z., Gawron, P., Miszczak, J.A., Skowronek, Ł., Choi, M.D., Życzkowski, K.: Product numerical range in a space with tensor product structure. Linear Algebra Appl. 434, 327–342 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61272057, 61170270 and 61572081), the Beijing Higher Education Young Elite Teacher Project (Grant Nos. YETP0475 and YETP0477) and the Natural Science Foundation of Shaanxi Province of China (No. 2015JM6263).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Gao.

Appendix

Appendix

Here Lemma 6 of the main text will be proved.

Firstly, we show the sufficiency. It suffices to show that if \(\phi <\theta <\psi \), then for any \(y=a_1+a_2\hbox {e}^{i\phi }+a_3\hbox {e}^{i\psi }+a_4\hbox {e}^{i\theta }\in W(V)\) with \(a_i\ge 0\) and \(\sum \nolimits _{i=1}^4a_i=1\), there always exist \(s,t\in [0,1]\) such that

$$\begin{aligned} st+s(1-t)\hbox {e}^{i\phi }+(1-s)t\hbox {e}^{i\psi }+(1-s)(1-t)\hbox {e}^{i\theta } =a_1+a_2\hbox {e}^{i\phi }+a_3\hbox {e}^{i\psi }+a_4\hbox {e}^{i\theta }. \end{aligned}$$

As to \(\psi <\theta <\phi \), the proof is similar.

By the equal of the complex numbers, we can obtain

$$\begin{aligned}&s(1-t)\sin \phi +(1-s)t\sin \psi +(1-s)(1-t)\sin \theta \\&\quad = a_2\sin \phi +a_3\sin \psi +a_4\sin \theta , \\&\quad \qquad st+s(1-t)\cos \phi +(1-s)t\cos \psi +(1-s)(1-t)\cos \theta \\&\quad = a_1+a_2\cos \phi +a_3\cos \psi +a_4\cos \theta . \end{aligned}$$

They can be regarded as an equation about s and t.

$$\begin{aligned}&s(\sin \phi -\sin \theta )+t(\sin \psi -\sin \theta ) -st(\sin \phi +\sin \psi -\sin \theta )\\&\quad = a_2\sin \phi +a_3\sin \psi +(a_4-1)\sin \theta , \\&\quad \qquad s(\cos \phi -\cos \theta )+t(\cos \psi -\cos \theta ) +st(1-\cos \phi -\cos \psi +\cos \theta ) \\&\quad = a_1+a_2\cos \phi +a_3\cos \psi +(a_4-1)\cos \theta . \end{aligned}$$

Further, we have

$$\begin{aligned} As+Bt=C, \end{aligned}$$

where

$$\begin{aligned} A= & {} \sin \phi -\sin \theta +\sin (\psi -\phi )+\sin (\theta -\psi )\\= & {} -4\sin \frac{\psi }{2}\sin \frac{\phi -\theta }{2}\sin \frac{\phi -\psi +\theta }{2},\\ B= & {} \sin \psi -\sin \theta -\sin (\psi -\phi )+\sin (\theta -\phi )\\= & {} -4\sin \frac{\phi }{2}\sin \frac{\psi -\theta }{2}\sin \frac{\psi +\theta -\phi }{2},\\ C= & {} (a_1+a_2)\left[ \sin \phi +\sin (\theta -\psi )\right] +(a_1+a_3)\\&\left[ \sin \psi -\sin (\phi -\theta )\right] -(2a_1+a_2+a_3)\sin \theta \\&+\,(a_2-a_3)\sin (\psi -\phi ). \\ \end{aligned}$$

Case 1 If \(A=0\), that is \(\psi =\phi +\theta \), then \(Bt=C\), which induces \(\theta =\pi \) or \(t=a_1+a_3\).

Let \(\theta =\pi \), then \(A=B=C=0\), which implies \(s-t=a_2-a_3\), \(s+t=1+a_1-a_4\). Thus \(s=a_1+a_2,t=a_1+a_3\).

Let \(t=a_1+a_3\), then \(B\ne 0\) which induces

$$\begin{aligned} s=\frac{a_2(\sin \phi -\sin \theta )-a_1\sin (\phi +\theta )}{(a_2+a_4)(\sin \phi -\sin \theta )-(a_1+a_3)\sin (\phi +\theta )}. \end{aligned}$$

Since \(0<\phi <\theta <\psi <2\pi \) and \(0<\psi =\phi +\theta <2\pi \), then \(\sin \frac{\phi -\theta }{2}<0,\sin \frac{\phi +\theta }{2}>0\). Further

$$\begin{aligned} (\sin \phi -\sin \theta )\sin (\phi +\theta ) =4\cos ^2\frac{\phi +\theta }{2}\sin \frac{\phi +\theta }{2}\sin \frac{\phi -\theta }{2}\le 0. \end{aligned}$$

Therefore \(0\le s\le 1\). Now, we have shown that if \(A=0\), then \(s,t\in [0,1]\).

Case 2 Suppose that \(A\ne 0\), then \(s={(C-Bt)}/{A}\). Further we can get that

$$\begin{aligned} at^2+bt+c=0, \end{aligned}$$

where

$$\begin{aligned} a= & {} \sin (\phi -\psi )+\sin \psi -\sin (\phi -\theta )-\sin \theta \\= & {} -4\sin \frac{\phi }{2}\sin \frac{\theta -\psi }{2}\sin \frac{\phi -\psi -\theta }{2},\\ b= & {} -(a_1+a_2)\sin \phi +(-1+a_2-a_3)\sin (\phi -\psi )\\&-\,(a_1+a_3)\sin \psi +(1+a_1+a_3)\sin (\phi -\theta )\\&+\,(a_1+a_2-1)\sin (\psi -\theta )+(2a_1+a_2+a_3)\sin \theta , \\ c= & {} a_1\left[ \sin \phi -\sin \theta -\sin (\phi -\theta )\right] \\&+\,a_3\left[ \sin (\phi -\psi )-\sin (\phi -\theta )+\sin (\psi -\theta )\right] \\= & {} -4\sin \frac{\phi -\theta }{2}\left( a_1\sin \frac{\phi }{2}\sin \frac{\theta }{2}+a_3\sin \frac{\phi -\psi }{2}\sin \frac{\theta -\psi }{2}\right) , \\ d= & {} a+b+c\\= & {} -4\sin \frac{\psi }{2}\left( a_2\sin \frac{\phi }{2}\sin \frac{\psi -\phi }{2}+a_4\sin \frac{\theta }{2}\sin \frac{\psi -\theta }{2}\right) . \end{aligned}$$

If \(0<\phi <\theta <\psi <2\pi \), then \(c\ge 0\) and \(a+b+c\le 0\). But both cannot be 0 at the same time, otherwise \(\sum \nolimits _{i=1}^4a_i=0\), which is a contradiction.

Case 2.1 Let \(a=0\). Since \(c\ge 0\), \(a+b+c\le 0\), and they cannot be 0 simultaneously; thus, \(t=-c/b\in [0,1]\).

Case 2.2 Let \(a\ne 0\), it need to be divided into three cases:

(I) \(a>0,b\le 0,c\ge 0\); (II) \(a<0,b\ge 0,c\ge 0\); (III) \(a<0,b\le 0,c\ge 0\).

As to the cases (II) (III), \(b^2-4ac\ge 0\). And for (I), \(b^2-4ac=(d-a-c)^2-4ac\ge {(a-c)^2}\ge 0\).

In the following we denote \(t_1=(-b+\sqrt{b^2-4ac})/2a\) and \(t_2=(-b-\sqrt{b^2-4ac})/2a\). Further we will show that \(t=t_2\) is the only solution in [0, 1].

According to (I)–(III), \(t_2\ge 0\). Since \(a+b+c\le 0\), we know that

if \(a>0\), \(a^2+ab+ac\le 0\), then \((2a+b)^2\le b^2-4ac\). If \(2a+b\le \sqrt{b^2-4ac}\), then \(t_1\ge 1\). If \(-2a-b\le \sqrt{b^2-4ac}\), then \(t_2\le 1\).

if \(a<0\), then \(a^2+ab+ac\ge 0\), and thus \((2a+b)^2\ge b^2-4ac\). Again, \(2a+b=d+a-c<0\), then \(t_2\le 1\).

In a word, if \(A\ne 0\), there always exists a solution \(t=-c/b\) or \(t=t_2\) in [0, 1].

Similarly, when \(0<\phi <\theta <\psi <2\pi \), there is also a solution s in [0, 1]. Note that if \(B\ne 0\), we can get a equation about s,

$$\begin{aligned} a^{\prime }s^2+b^{\prime }s+c^{\prime }=0, \end{aligned}$$

where

$$\begin{aligned} a^{\prime }= & {} \sin \phi -\sin (\phi -\psi )-\sin (\psi -\theta )-\sin \theta \\= & {} -4\sin \frac{\psi }{2}\sin \frac{\phi -\theta }{2}\sin \frac{\phi -\psi +\theta }{2}, \\ b^{\prime }= & {} -(a_1+a_2)\sin \phi +(1+a_2-a_3)\sin (\phi -\psi )\\&-\,(a_1+a_3)\sin \psi -(1-a_1-a_3)\sin (\phi -\theta )\\&+\,(1+a_1+a_2)\sin (\psi -\theta )+(2a_1+a_2+a_3)\sin \theta , \\ c^{\prime }= & {} a_1\left[ \sin \psi -\sin \theta -\sin (\psi -\theta )\right] \\&+\,a_2\left[ \sin (\phi -\theta )-\sin (\phi -\psi )-\sin (\psi -\theta )\right] \\= & {} -4\sin \frac{\psi -\theta }{2}\left( a_1\sin \frac{\psi }{2}\sin \frac{\theta }{2}+a_2\sin \frac{\phi -\psi }{2}\sin \frac{\phi -\theta }{2}\right) , \\ d^{\prime }= & {} a^{\prime }+b^{\prime }+c^{\prime } \\= & {} -4\sin \frac{\phi }{2}\left( a_3\sin \frac{\psi }{2}\sin \frac{\phi -\psi }{2}+a_4\sin \frac{\theta }{2}\sin \frac{\phi -\theta }{2}\right) . \end{aligned}$$

Now we turn to consider the necessity. We only need to show that when \(\phi <\psi <\theta , \psi <\phi <\theta , \theta <\phi <\psi \) and \(\theta <\psi <\phi \), \(W^{\mathrm{local}}(V)\subset W(V)\). Namely, there always exists a point, such as \(\frac{1}{2}+\frac{1}{2}\hbox {e}^{i\theta }\), such that \(\frac{1}{2}+\frac{1}{2}\hbox {e}^{i\theta }\in W(V)\), but \(\frac{1}{2}+\frac{1}{2}\hbox {e}^{i\theta }\notin W^{\mathrm{local}}(V)\). First we will prove that when \(0<\phi <\psi <\theta <2\pi \), \(\frac{1}{2}+\frac{1}{2}\hbox {e}^{i\theta }\notin W^{\mathrm{local}}(V)\). And if \(0<\theta <\psi <\phi <2\pi \), the proof is similar.

When \(0<\phi <\psi <\theta <2\pi \), \(0<\frac{\phi -\psi +\theta }{2}<\pi \). So \(A>0\). Thus the equation about t must be obtained.

$$\begin{aligned} at^2+bt+c=0, \end{aligned}$$

where

$$\begin{aligned} a= & {} -4\sin \frac{\phi }{2}\sin \frac{\theta -\psi }{2}\sin \frac{\phi -\psi -\theta }{2}, \\ b= & {} -\frac{1}{2}\sin \phi -\sin (\phi -\psi )-\frac{1}{2}\sin \psi \\&+\,\frac{3}{2}\sin (\phi -\theta )-\frac{1}{2}\sin (\psi -\theta )+\sin \theta ,\\ c= & {} -2\sin \frac{\phi }{2}\sin \frac{\theta }{2}\sin \frac{\phi -\theta }{2}, \\ d= & {} a+b+c=-2\sin \frac{\psi }{2}\sin \frac{\theta }{2}\sin \frac{\psi -\theta }{2}. \end{aligned}$$

And \(c>0,a+b+c>0\).

Case 1 If \(a=0\), then \(bt=-c\). When \(0<\phi <\psi <\theta <2\pi \), \(a=0\) is equivalent to \(\psi +\theta =\phi +2\pi \). So \(b=4\sin \frac{\psi }{2}\cos \frac{\psi }{2}\sin ^2\frac{\theta }{2}\). Thus b can be positive, negative and zero. Again \(b+c>0,c>0\), it is easy to see that if \(b>0,t=-c/b<0\); if \(-c<b<0, t=-c/b>1\); if \(b=0\), there is no t.

Therefore, if \(a=0\), there is no solution t in [0, 1].

Case 2 Let \(a\ne 0\), it can be divided into four cases:

(I) \(a>0,b\ge 0,c>0\); (II) \(a>0,b\le 0,c>0\);

(III) \(a<0,b\ge 0,c>0\); (IV) \(a<0,b\le 0,c>0\).

The notations \(t_1=(-b+\sqrt{b^2-4ac})/2a\) and \(t_2=(-b-\sqrt{b^2-4ac})/2a\) will also be used as follows.

Case 2.1 As to (III) (IV), \(b^2-4ac>0\) and only \(t_2>0\). Since \(a+b+c>0\) and \(a<0\), then \((2a+b)^2<b^2-4ac\). So \(-2a-b<\sqrt{b^2-4ac}\), thus \(t_2>1\). Therefore, for (III) (IV), there is no solution t in [0, 1].

As to (I) (II), if \(b^2-4ac<0\), there is no t. So let \(b^2-4ac\ge 0\). For (I), there is no solution t in [0, 1]. For (II), since \(a+b+c>0\) and \(a>0\), then \((2a+b)^2>b^2-4ac\). If \(2a+b<0\), then \(t_2>1\), which does not meet our requirement. If \(2a+b>0\), then \(t_1<1\).

For (I) (III) (IV), we have shown that there is no solution t in [0, 1]. For (II), we will suppose that both s and t have the solution in [0, 1] and find the contradiction as follows.

Case 2.2 If \(a>0,b\le 0,c>0\). Assume that \(b^2-4ac\ge 0\) and \(2a+b>0\), then \(t=t_1\in [0,1]\) and \(a>c\). And let \(0\le s\le 1\), where \(s={(C-Bt)}/{A}, A>0, B=a>0\), and \(C=c+d=a+b+2c>0\). So \(C-A\le Bt\le C\). By \(Bt\le C\), then \(\sqrt{{{b}^{2}}-4ac}\le 2a+3b+4c\). Since \(2a+3b+4c\ge 0\), then \(0\ge b\ge (-2a-4c)/3\), thus \({{b}^{2}}-4ac\le 4(a-4c)(a-c)/9<0\), which is due to that \(a-c>0\) and

$$\begin{aligned} a-4c=4\sin \frac{\phi }{2}\left( \sin \frac{\psi }{2}\sin \frac{\phi -\psi }{2}+\sin \frac{\theta }{2}\sin \frac{\phi -\theta }{2}\right) <0. \end{aligned}$$

This is a contradiction.

Therefore, when \(a\ne 0\), not both s and t have the solution in [0, 1]. That is at least one of s and t has no solution in [0, 1].

Above all, if \(0<\phi <\psi <\theta <2\pi \), then \(\frac{1}{2}+\frac{1}{2}\hbox {e}^{i\theta }\in W(V)\), but \(\frac{1}{2}+\frac{1}{2}\hbox {e}^{i\theta }\notin W^{\mathrm{local}}(V)\). That is \(W^{\mathrm{local}}(V)\subset W(V)\).

Similarly, when \(0<\psi <\phi <\theta <2\pi \) and \(0<\theta <\phi <\psi <2\pi \), \(\frac{1}{2}+\frac{1}{2}\hbox {e}^{i\theta }\in W(V)\) and \(\frac{1}{2}+\frac{1}{2}\hbox {e}^{i\theta }\notin W^{\mathrm{local}}(V)\). But it should be noted that in these two situations we must consider the equation about s,

$$\begin{aligned} a^{\prime }s^2+b^{\prime }s+c^{\prime }=0, \end{aligned}$$

where

$$\begin{aligned} a^{\prime }= & {} -4\sin \frac{\psi }{2}\sin \frac{\phi -\theta }{2}\sin \frac{\phi -\psi +\theta }{2},\\ b^{\prime }= & {} -\frac{1}{2}\sin \phi +\sin (\phi -\psi )-\frac{1}{2}\sin \psi -\frac{1}{2}\sin (\phi -\theta )\\&+\,\frac{3}{2}\sin (\psi -\theta )+\sin \theta , \\ c^{\prime }= & {} -2\sin \frac{\psi }{2}\sin \frac{\theta }{2}\sin \frac{\psi -\theta }{2},\\ d^{\prime }= & {} -2\sin \frac{\phi }{2}\sin \frac{\theta }{2}\sin \frac{\phi -\theta }{2}. \end{aligned}$$

To sum up, we have shown that \(W^{\mathrm{local}}(V)=W(V)\) if and only if \(\phi <\theta <\psi \) or \(\psi <\theta <\phi \). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, TQ., Gao, F., Yang, YH. et al. Determination of locally perfect discrimination for two-qubit unitary operations. Quantum Inf Process 15, 529–549 (2016). https://doi.org/10.1007/s11128-015-1175-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1175-x

Keywords

Navigation