Abstract
We investigate the quantum phase transition of an atomic ensemble trapped in a single-mode optical cavity via the geometric phase and quantum Fisher information of an extra probe atom which is injected into the optical cavity and interacts with the cavity field. We also find that the geometric quantum correlation between two probe atoms exhibits a double sudden transition phenomenon and show this double sudden transition phenomenon is closely associated with the quantum phase transition of the atomic ensemble. Furthermore, we propose a theoretical scheme to prolong the frozen time during which the geometric quantum correlation remains constant by applying time-dependent electromagnetic field.









Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Sachdev, S.: Quantum Phase Transition. Cambridge University Press, New York (1999)
Osterloh, A., Amico, L., Falci, G., Fazio, R.: Scaling of entanglement close to a quantum phase transition. Nature (London) 416, 608 (2002)
Gu, S.-J.: Fidelity approach to quantum phase transitions. Int. J. Mod. Phys. B 24, 4371 (2010)
Luo, D.-W., Xu, J.-B.: Trace distance and scaling behavior of a coupled cavity lattice at finite temperature. Phys. Rev. A 87, 013801 (2013)
Dicke, R.H.: Coherence in spontaneous radiation processes. Phys. Rev. 93, 99 (1954)
Baumann, K., Guerlin, C., Brennecke, F., Esslinger, T.: Dicke quantum phase transition with a superfluid gas in an optical cavity. Nature (London) 464, 1301 (2010)
Sabin, C., White, A., Hackermuller, L., Fuentes, I.: Impurities as a quantum thermometer for a Bose-Einstein condensate. Sci. Rep. 4, 6436 (2014)
Berry, M.V.: Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392, 45 (1984)
Tong, D.M., Sjoqvist, E., Kwek, L.C., Oh, C.H.: Kinematic approach to the mixed state geometric phase in nonunitary evolution. Phys. Rev. Lett. 93, 080405 (2004)
Yi, X.X., Wang, W.: Geometric phases induced in auxiliary qubits by many-body systems near their critical points. Phys. Rev. A 75, 032103 (2007)
Zhang, X., Zhang, A., Li, L.: Detecting the multi-spin interaction of an XY spin chain by the geometric phase of a coupled qubit. Phys. Lett. A 376, 2090 (2012)
Zhang, A., and Li, F.: Geometric phase of a central qubit coupled to a spin chain in a thermal equilibrium state. Phys. Lett. A, 377, 528 (2103)
Braunstein, S.L., Caves, C.M.: Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72, 3439 (1994)
Helstrom, C.W.: Quantum Detection and Estimation Theory. AcademicPress, New York (1976)
Holevo, A.S.: Probabilistic and Statistical Aspect of Quantum Theory. North-Holland, Amsterdam (1982)
Wootters, W.K.: Statistical distance and Hilbert space. Phys. Rev. D 23, 357 (1981)
Liu, W.-F., Ma, J., Wang, X.: Quantum Fisher information and spin squeezing in the ground state of the XY model. J. Phys. A: Math. Theor. 46, 045302 (2013)
Ma, J., Wang, X.: Fisher information and spin squeezing in the Lipkin-Meshkov-Glick model. Phys. Rev. A 80, 012318 (2009)
Wang, T.-L., Wu, L.-N., Yang, W., Jin, G.-R., Lambert, N., Nori, F.: Quantum Fisher information as a signature of the superradiant quantum phase transition. New J. Phys. 16, 063039 (2014)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and QuantumInformation. Cambridge University Press, Cambridge (2000)
Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)
Dakic, B., Vedral, V., Brukner, C.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)
Paula, F.M., de Oliveira, T.R., Sarandy, M.S.: Geometric quantum discord through the Schatten 1-norm. Phys. Rev. A 87, 064101 (2013)
Paula, F.M., Silva, I.A., Montealegre, J.D., Souza, A.M., deAzevedo, E.R., Sarthour, R.S., Saguia, A., Oliveira, I.S., Soares-Pinto, D.O., Adesso, G., Sarandy, M.S.: Observation of environment-induced double sudden transitions in geometric quantum correlations. Phys. Rev. Lett. 111, 250401 (2013)
Paula, F.M., Montealegre, J.D., Saguia, A., deAzevedo, E.R., Sarandy, M.S.: Geometric classical and total correlations via trace distance. Europhys. Lett. 103, 50008 (2013)
Montealegre, J.D., Paula, F.M., Saguia, A., Sarandy, M.S.: One-norm geometric quantum discord under decoherence. Phys. Rev. A 87, 042115 (2013)
Spehner, D., Orszag, M.: Geometric quantum discord with Bures distance. New J. Phys. 15, 103001 (2013)
Aaronson, B., Franco, R.L., Compagno, G., Adesso, G.: Hierarchy and dynamics of trace distance correlations. New J. Phys. 15, 093022 (2013)
Ciccarello, F., Tufarelli, T., Giovannetti, V.: Toward computability of trace distance discord. New J. Phys. 16, 013038 (2014)
Aaronson, B., Franco, R.L., Adesso, G.: Comparative investigation of the freezing phenomena for quantum correlations under nondissipative decoherence. Phys. Rev. A 88, 012120 (2013)
Villar, P.I., Lombardo, F.C.: Geometric phases in the presence of a composite environment. Phys. Rev. A 83, 052121 (2011)
Pezze, L., Smerzi, A.: Entanglement, Nonlinear Dynamics, and the Heisenberg Limit. Phys. Rev. Lett. 102, 100401 (2009)
Nagy, D., Konya, G., Szirmai, G., Domokos, P.: Dicke-Model Phase Transition in the Quantum Motion of a Bose-Einstein Condensate in an Optical Cavity. Phys. Rev. Lett. 104, 130401 (2010)
Brennecke, F., Ritter, S., Donner, T., Esslinger, T.: Cavity optomechanics with a Bose-Einstein condensate. Science 322, 235 (2008)
Brahms, N., Botter, T., Schreppler, S., Brooks, D.W.C., Stamper-Kurni, D.M.: Optical detection of the quantization of collective atomic motion. Phys. Rev. Lett. 108, 133601 (2012)
de Faria, J.G.P., Nemes, M.C.: Dissipative dynamics of the Jaynes-Cummings model in the dispersive approximation: Analytical results. Phys. Rev. A 59, 3918 (1999)
Yuan, J.-B., Kuang, L.-M.: Quantum-discord amplification induced by a quantum phase transition via a cavity-Bose-Einstein-condensate system. Phys. Rev. A 87, 024101 (2013)
Huang, J.-F., Li, Y., Liao, J.-Q., Kuang, L.-M., Sun, C.P.: Dynamic sensitivity of photon-dressed atomic ensemble with quantum criticality. Phys. Rev. A 80, 063829 (2009)
Sun, Z., Ma, J., Lu, X.-M., Wang, X.: Fisher information in a quantum-critical environment. Phys. Rev. A 82, 022306 (2010)
Solano, E., Agarwal, G.S., Walther, H.: Strong-Driving-Assisted Multipartite Entanglement in Cavity QED. Phys. Rev. Lett. 90, 027903 (2003)
Zhang, J.-S., Xu, J.-B.: Control of the entanglement of a two-level atom in a dissipative cavity via a classical field. Opt. Commun. 282, 2543 (2009)
Acknowledgments
This project was supported by the National Natural Science Foundation of China (Grant No. 11274274) and the fundamental Research Funds for the Central Universities (Grant No. 2016FZA3004).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wu, W., Xu, JB. Geometric phase, quantum Fisher information, geometric quantum correlation and quantum phase transition in the cavity-Bose–Einstein-condensate system. Quantum Inf Process 15, 3695–3709 (2016). https://doi.org/10.1007/s11128-015-1186-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-015-1186-7