Skip to main content
Log in

Generation of singlet states with Rydberg blockade mechanism and driven by adiabatic passage

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A single state is a special state that entangles multi-state quantum systems and plays a significant role in the field of quantum computation. In this paper, we propose a scheme to realize the generation of single states for Rydberg atoms, where one Rydberg atom is trapped in an optical potential and the others are trapped in an adjacent optical potential. Moreover, combining Rydberg blockade and adiabatic-passage technologies, an N-atom singlet state can be generated with the interaction of an N-dimensional Rydberg atom and an (\(N-1\))-atom singlet state. Compared to previous schemes, the advantage of our proposal is that an N-particle N-level singlet state with \(N\ge 3\) may be realized more simply.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  2. Kaszlikowski, D., Gnaciński, P., Żukowski, M., Miklaszewski, W., Zeilinger, A.: Violations of local realism by two entangled N-dimensional systems are stronger than for two qubits. Phys. Rev. Lett. 85, 4418 (2000)

    Article  ADS  Google Scholar 

  3. Bruß, D., Macchiavello, C.: Optimal eavesdropping in cryptography with three-dimensional quantum states. Phys. Rev. Lett. 88, 127901 (2002)

    Article  ADS  Google Scholar 

  4. Greentree, A.D., Schirmer, S.G., Green, F., Hollenberg, L.C.L., Hamilton, A.R., Clark, R.G.: Maximizing the Hilbert space for a finite number of distinguishable quantum states. Phys. Rev. Lett. 92, 097901 (2004)

    Article  ADS  Google Scholar 

  5. Cabello, A.: N-Particle N-level singlet states: some properties and applications. Phys. Rev. Lett. 89, 100402 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  6. Cabello, A.: Supersinglets. J. Mod. Opt. 50, 10049 (2003)

    Article  MathSciNet  Google Scholar 

  7. Jin, G.S., Li, S.S., Feng, L., Zheng, H.Z.: Generation of a supersinglet of three three-level atoms in cavity QED. Phys. Rev. A 71, 034307 (2005)

    Article  ADS  Google Scholar 

  8. Lin, G.W., Ye, M.Y., Chen, L.B., Du, Q.H., Lin, X.M.: Generation of the singlet state for three atoms in cavity QED. Phys. Rev. A 76, 014308 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  9. Huang, X.H., Lin, G.W., Ye, M.Y., Tang, Y.X., Lin, X.M.: Realization of a singlet state via adiabatic evolution of dark eigenstates. Opt. Commun. 281, 4545 (2008)

    Article  ADS  Google Scholar 

  10. Yang, R.C., Lin, X., Huang, Z.P., Li, H.C.: A singlet state prepared with resonant interaction via trapped ions. Opt. Commun. 282, 1952 (2009)

    Article  ADS  Google Scholar 

  11. Shao, X.Q., Wang, H.F., Chen, L., Zhang, S., Zhao, Y.F., Yeon, K.W.: Converting two-atom singlet state into three-atom singlet state via quantum Zeno dynamics. New J. Phys. 12, 023040 (2010)

    Article  ADS  Google Scholar 

  12. Shao, X.Q., Zheng, T.Y., Zhang, S.: Engineering steady three-atom singlet states via quantum-jump-based feedback. Phys. Rev. A 85, 042308 (2012)

    Article  ADS  Google Scholar 

  13. Shi, Z.C., Xia, Y., Song, J., Song, H.S.: Generation of three-atom singlet state in a bimodal cavity via quantum Zeno dynamics. Quantum Inf. Process. 12, 411 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Shao, X.Q., You, J.B., Zheng, T.Y., Oh, C.H., Zhang, S.: Stationary three-dimensional entanglement via dissipative Rydberg pumping. Phys. Rev. A 89, 052313 (2014)

    Article  ADS  Google Scholar 

  15. Yang, R.C., Lin, X., Lin, X.M.: Generation of three-qutrit singlet states for three atoms trapped in separated cavities. Opt. Commun. 338, 366 (2015)

    Article  ADS  Google Scholar 

  16. Yang R. C., Ye L. X., Lin X., Chen X., Liu H. Y.: Generation of three-qutrit singlet states with trapped ions via adiabatic passage. Quantum Inf. Process. doi:10.1007/s11128-015-1130-x

  17. Møller, D., Madsen, L.B., Mølmer, K.: Quantum gates and multiparticle entanglement by Rydberg excitation blockade and adiabatic passage. Phys. Rev. Lett. 100, 170504 (2008)

    Article  Google Scholar 

  18. Gaëtan, A., Miroshnychenko, Y., Wilk, T., Chotia, A., Viteau, M., Comparat, D., Pillet, P., Browaeys, A., Grangier, P.: Observation of collective excitation of two individual atoms in the Rydberg blockade regime. Nat. Phys. 5, 115 (2009)

    Article  Google Scholar 

  19. Wilk, T., Gaëtan, A., Evellin, C., Wolters, J., Miroshnychenko, Y., Grangier, P., Browaeys, A.: Entanglement of two individual neutral atoms using Rydberg blockade. Phys. Rev. Lett. 104, 010502 (2010)

    Article  ADS  Google Scholar 

  20. Schauß, P., Cheneau, M., Endres, M., Fukuhara, T., Hild, S., Omran, A., Pohl, T., Gross, C., Kuhr, S., Bloch, I.: Observation of spatially ordered structures in a two-dimensional Rydberg gas. Nature 491, 87 (2012)

    Article  ADS  Google Scholar 

  21. Urban, E., Johnson, T.A., Henage, T., Isenhower, L., Yavuz, D.D., Walker, T.G., Saffman, M.: Observation of Rydberg blockade between two atoms-experiment. Nat. Phys. 5, 110 (2009)

    Article  Google Scholar 

  22. Comparat, D., Pillet, P.: Dipole blockade in a cold Rydberg atomic sample. J. Opt. Soc. Am. B 27, A208 (2010)

    Article  ADS  Google Scholar 

  23. Saffman, M., Walker, T.G., Mølmer, K.: Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313 (2010)

    Article  ADS  Google Scholar 

  24. Löw, R., Weimer, H., Nipper, J., Balewski, J.B., Butscher, B., Büchler, H.P., Pfau, T.: An experimental and theoretical guide to strongly interacting Rydberg gases. J. Phys. B: At. Mol. Opt. Phys. 45, 113001 (2012)

    Article  ADS  Google Scholar 

  25. Jaksch, D., Cirac, J.I., Zoller, P., Rolston, S.L., Côté, R., Lukin, M.D.: Fast quantum gates for neutral atoms. Phys. Rev. Lett. 85, 2208 (2000)

    Article  ADS  Google Scholar 

  26. Lukin, M.D., Fleischhauer, M., Côté, R., Duan, L.M., Jaksch, D., Cirac, J.I., Zoller, P.: Dipole blockade and quantum information processing in mesoscopic atomic ensembles. Phys. Rev. Lett. 87, 037901 (2001)

    Article  ADS  Google Scholar 

  27. Vitanov, N.V.: Coherent manipulation of atoms and molecules by sequential laser pulses. Adv. Atom. Mol. Opt. Phys. 46, 55 (2001)

    Article  ADS  Google Scholar 

  28. Chen, L.B., Yang, W.: All-optical controlled phase gate in quantum dot molecules. Laser Phys. Lett. 11, 105201 (2014)

    Article  ADS  Google Scholar 

  29. Ivanov, P.A., Vitanov, N.V., Plenio, M.B.: Creation of cluster states of trapped ions by collective addressing. Phys. Rev. A 78, 012323 (2008)

    Article  ADS  Google Scholar 

  30. Torosov, B.T., Guérin, S., Vitanov, N.V.: High-fidelity adiabatic passage by composite sequences of chirped pulses. Phys. Rev. Lett. 106, 233001 (2011)

    Article  ADS  Google Scholar 

  31. Sørensen, A.S., Altman, E., Gullans, M., Porto, J.V., Lukin, M.D., Demler, E.: Adiabatic preparation of many-body states in optical lattices. Phys. Rev. A 81, 061603 (2010)

    Article  ADS  Google Scholar 

  32. Müller, M., Lesanovsky, I., Weimer, H., Büchler, H.P., Zoller, P.: Mesoscopic Rydberg gate based on electromagnetically induced transparency. Phys. Rev. Lett. 102, 170502 (2009)

    Article  Google Scholar 

  33. Vitanov, N.V., Suominen, K.A., Shore, B.W.: Creation of coherent atomic superpositions by fractional stimulated Raman adiabatic passage. J. Phys. B: At. Mol. Opt. Phys. 32, 4535 (1999)

    Article  ADS  Google Scholar 

  34. Gallagher, T.F.: Rydberg Atoms. Cambridge University Press, Cambridge (1994)

    Book  Google Scholar 

Download references

Acknowledgments

We would like to thank Y. Xia for helpful suggestions. This work is supported by the National Natural Science Foundation of China (Grant Nos. 61308012 and 61275215), the Natural Science Foundation of Fujian Province of China (Grant Nos. 2013J01008 and 2012J01004), and the Foundation of Fujian educational department (Grant Nos. JA14075, JB13021 and JB12014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong-Can Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, RC., Lin, X., Ye, LX. et al. Generation of singlet states with Rydberg blockade mechanism and driven by adiabatic passage. Quantum Inf Process 15, 731–740 (2016). https://doi.org/10.1007/s11128-015-1188-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1188-5

Keywords

Navigation