Skip to main content
Log in

Study of quantum correlation swapping with relative entropy methods

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

To generate long-distance shared quantum correlations (QCs) for information processing in future quantum networks, recently we proposed the concept of QC repeater and its kernel technique named QC swapping. Besides, we extensively studied the QC swapping between two simple QC resources (i.e., a pair of Werner states) with four different methods to quantify QCs (Xie et al. in Quantum Inf Process 14:653–679, 2015). In this paper, we continue to treat the same issue by employing other three different methods associated with relative entropies, i.e., the MPSVW method (Modi et al. in Phys Rev Lett 104:080501, 2010), the Zhang method (arXiv:1011.4333 [quant-ph]) and the RS method (Rulli and Sarandy in Phys Rev A 84:042109, 2011). We first derive analytic expressions of all QCs which occur during the swapping process and then reveal their properties about monotonicity and threshold. Importantly, we find that a long-distance shared QC can be generated from two short-distance ones via QC swapping indeed. In addition, we simply compare our present results with our previous ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  2. Luo, S.L.: Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303 (2008)

    Article  ADS  Google Scholar 

  3. Luo, S.L.: Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A 77, 022301 (2008)

    Article  ADS  Google Scholar 

  4. Luo, S.L., Fu, S.S.: Geometric measure of quantum discord. Phys. Rev. A 82, 034302 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  5. Modi, K., Paterek, T., Son, W., Vedral, V., Williamson, M.: Unified view of quantum and classical correlations. Phys. Rev. Lett. 104, 080501 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  6. Dakic, B., Vedral, V., Brukner, C.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

    Article  ADS  Google Scholar 

  7. Girolami, D., Paternostro, M., Adesso, G.: Faithful nonclassicality indicators and extremal quantum correlations in two-qubit states. J. Phys. A Math. Theor. 44, 352002 (2011)

    Article  Google Scholar 

  8. Zhou, T., Cui, J., Long, G.L.: Measure of nonclassical correlation in coherence-vector representation. Phys. Rev. A 84, 062105 (2011)

    Article  ADS  Google Scholar 

  9. Zhang, Z.J.: Revised definitions of quantum dissonance and quantum discord. arXiv:1011.4333 [quant-ph]

  10. Rulli, C.C., Sarandy, M.S.: Global quantum discord in multipartite systems. Phys. Rev. A 84, 042109 (2011)

    Article  ADS  Google Scholar 

  11. Zhang, F.L., Chen, J.L.: Irreducible multiqutrit correlations in Greenberger–Horne–Zeilinger type states. Phys. Rev. A. 84, 062328 (2011)

    Article  ADS  Google Scholar 

  12. Wei, H.R., Ren, B.C., Deng, F.G.: Geometric measure of quantum discord for a two-parameter class of states in a qubit–qutrit system under various dissipative channels. Quantum Inf. Process. 12, 1109 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Ali, M., Rau, A.R.P., Alber, G.: Quantum discord for two-qubit X states. Phys. Rev. A 81, 042105 (2010)

    Article  ADS  Google Scholar 

  14. Hu, X.Y., et al.: Necessary and sufficient conditions for local creation of quantum correlation. Phys. Rev. A 85, 032102 (2012)

    Article  ADS  Google Scholar 

  15. Shi, M., Sun, C., Jiang, F., Yan, X., Du, J.: Optimal measurement for quantum discord of two-qubit states. Phys. Rev. A 85, 064104 (2012)

    Article  ADS  Google Scholar 

  16. Huang, Y.C.: Quantum discord for two-qubit X states: analytical formula with very small worst-case error. Phys. Rev. A 88, 014302 (2013)

    Article  ADS  Google Scholar 

  17. Huang, Y.C.: Scaling of quantum discord in spin models. Phys. Rev. B 89, 054410 (2014)

    Article  ADS  Google Scholar 

  18. Huang, Y.C.: Computing quantum discord is NP-complete. New J. Phys. 16, 033027 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  19. Giorda, P., Paris, M.G.A.: Gaussian quantum discord. Phys. Rev. Lett. 105, 020503 (2010)

    Article  ADS  Google Scholar 

  20. Hu, X., Fan, H., Zhou, D.L., Liu, W.M.: Quantum correlating power of local quantum channels. Phys. Rev. A 87, 032340 (2013)

    Article  ADS  Google Scholar 

  21. Hu, M.L., Fan, H.: Upper bound and shareability of quantum discord based on entropic uncertainty relations. Phys. Rev. A 88, 014105 (2013)

    Article  ADS  Google Scholar 

  22. Ye, B.L., Liu, Y.M., Chen, J.L., Liu, X.S., Zhang, Z.J.: Analytic expressions of quantum correlations in qutrit Werner states. Quantum Inf. Process. 12, 2355 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Tang, H.J., Liu, Y.M., Chen, J.L., Ye, B.L., Zhang, Z.J.: Analytic expressions of discord and geometric discord in Werner derivatives. Quantum Inf. Process. 13, 1331 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Li, G.F., Liu, Y.M., Tang, H.J., Yin, X.F., Zhang, Z.J.: Analytic expression of quantum correlations in qutrit Werner states undergoing local and nonlocal unitary operations. Quantum Inf. Process. 14, 559 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Xie, C.M., Liu, Y.M., Li, G.F., Zhang, Z.J.: A note on quantum correlations in Werner states under two collective noises. Quantum Inf. Process. 13, 2713 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Xie, C.M., Liu, Y.M., Xing, H., Chen, J.L., Zhang, Z.J.: Quantum correlation swapping. Quantum Inf. Process. 14, 653–679 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Madsen, L.S., Berni, A., Lassen, M., Andersen, U.L.: Experimental investigation of the evolution of Gaussian quantum discord in an open system. Phys. Rev. Lett. 109, 030402 (2012)

    Article  ADS  Google Scholar 

  28. Lanyon, B.P., Jurcevic, P., Hempel, C., et al.: Experimental generation of quantum discord via noisy processes. Phys. Rev. Lett. 111, 100504 (2013)

    Article  ADS  Google Scholar 

  29. Vogl, U., Glasser, R.T., Glorieux, Q., et al.: Experimental characterization of Gaussian quantum discord generated by four-wave mixing. Phys. Rev. A 87, 010101(R) (2013)

    Article  ADS  Google Scholar 

  30. Benedetti, C., Shurupov, A.P., Paris, M.G.A., et al.: Experimental estimation of quantum discord for a polarization qubit and the use of fidelity to assess quantum correlations. Phys. Rev. A 87, 052136 (2013)

    Article  ADS  Google Scholar 

  31. Madhok, V., Datta, A.: Interpreting quantum discord through quantum state merging. Phys. Rev. A 83, 032323 (2011)

    Article  ADS  Google Scholar 

  32. Dakic, B., Lipp, Y.O., Ma, X., et al.: Quantum discord as resource for remote state preparation. Nat. Phys. 8, 666 (2012)

    Article  Google Scholar 

  33. Li, B., Fei, S.M., Wang, Z.X., Fan, H.: Assisted state discrimination without entanglement. Phys. Rev. A 85, 022328 (2012)

    Article  ADS  Google Scholar 

  34. Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)

    Article  ADS  Google Scholar 

  35. Maziero, J., Céleri, L.C., Serra, R.M., Vedral, V.: Classical and quantum correlations under decoherence. Phys. Rev. A 80, 044102 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  36. Streltsov, A., Kampermann, H., Bruss, D.: Behavior of quantum correlations under local noise. Phys. Rev. Lett. 107, 170502 (2011)

    Article  ADS  Google Scholar 

  37. Ciccarello, F., Giovannetti, V.: Creating quantum correlations through local nonunitary memoryless channels. Phys. Rev. A 85, 010102(R) (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China under Grant Nos. 11375011 and 11372122, the Natural Science Foundation of Anhui Province under Grant No. 1408085MA12, the Program for Excellent Talents at the University of Guangdong Province (Guangdong Teacher Letter [1010] No. 79), and the 211 Project of Anhui University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanjun Zhang.

Appendices

Appendix 1

Theorem

If two bipartite states can be converted mutually via single-partite unitary operations, then they are equivalent in the sense of calculating total, quantum and classical correlations with each of the three methods. To be specific, if \(\rho _{ab} = u_a v_b \rho _{ab}' u_a^\dag v_b^\dag \), where u and v are unitary operators, then \(T[\rho _{ab}] = T[\rho '_{ab}], D_\mathrm{M}[\rho _{ab}] = D_\mathrm{M}[\rho _{ab}'], C_\mathrm{M}[\rho _{ab}] = C_\mathrm{M}[\rho _{ab}'], D_\mathrm{Z}[\rho _{ab}] = D_\mathrm{Z}[\rho _{ab}'], C_\mathrm{Z}[\rho _{ab}] = C_\mathrm{Z}[\rho _{ab}'], D_\mathrm{R}[\rho _{ab}] = D_\mathrm{R}[\rho _{ab}']\), and \(C_\mathrm{R}[\rho _{ab}] = C_\mathrm{R}[\rho _{ab}']\).

Proof

For a bipartite state, its product state is determined. Hence, its total correlations estimated in the three methods are equal to each other according to the definition. Since \(\rho _{ab} = u_a v_b \rho _{ab}' u_a^\dag v_b^\dag \), in terms of Eqs. (5), (10) and (1) as well as the trace property of von Neumann entropy one can derive

$$\begin{aligned} T [\rho _{ab}]= & {} T \left[ u_a v_b \rho _{ab}' u_a^\dag v_b^\dag \right] = S\left\{ \pi \left[ u_a v_b \rho _{ab}' u_a^\dag v_b^\dag \right] \right\} -S\left\{ u_a v_b \rho _{ab}' u_a^\dag v_b^\dag \right\} \nonumber \\= & {} S\left\{ tr_au_a v_b \rho _{ab}' u_a^\dag v_b^\dag \otimes tr_bu_a v_b \rho _{ab}' u_a^\dag v_b^\dag \right\} -S\{\rho '_{ab}\}\nonumber \\= & {} S\left\{ tr_a\rho '_{ab} \otimes tr_b \rho '_{ab} \right\} - S\{\rho '_{ab}\} = S\{\pi [\rho '_{ab}]\}-S\{\rho '_{ab}\}= T [\rho _{ab}']. \end{aligned}$$
(88)

In terms of the classical state definition given in Eq. (2) and Eqs. (3032), one knows that, if \(\chi [\rho _{ab}]\) is a classical state of \(\rho _{ab}\), then \(u_a^\dag v_b^\dag \chi [\rho _{ab}]v_b u_a \) is a classical state of \(\rho '_{ab}\), and vice versa. That is to say,

$$\begin{aligned} \chi [\rho '_{ab}] = u_a^\dag v_b^\dag \chi [\rho _{ab}]v_b u_a, \ \ \chi [\rho _{ab}] = u_a v_b\chi [\rho '_{ab}] v_b^\dag u_a^\dag . \end{aligned}$$
(89)

Using the definition of quantum discord given by Eq. (11) and the equality above, one can get

$$\begin{aligned} D_\mathrm{M}[\rho _{ab}]= & {} = \min _{\chi [\rho '_{ab}]} \left\{ S\left\{ u_a v_b\chi [\rho '_{ab}] v_b^\dag u_a^\dag \right\} - S\{u_a v_b \rho _{ab}' u_a^\dag v_b^\dag )\right\} \nonumber \\= & {} \min _{\chi [\rho '_{ab}]} \left\{ S\{\chi [\rho _{ab}']\}- S\{\rho '_{ab})\right\} = D_\mathrm{M}[\rho '_{ab}]. \end{aligned}$$
(90)

Meanwhile, one can further obtain

$$\begin{aligned} \chi ^\mathrm{M} [\rho _{ab} ] = u_a v_b \chi ^\mathrm{M} [\rho _{ab}'] v_b^\dag u_a^\dag . \end{aligned}$$
(91)

According to the definition of classical correlation given by Eq. (12) in the MPSVW method, one is readily to have

$$\begin{aligned} C_\mathrm{M}[\rho _{ab}]= & {} S\left\{ \pi \left[ \chi ^M [ \rho _{ab} ]\right] \right\} - S\left\{ \chi ^M [ \rho _{ab} ]\right\} \nonumber \\= & {} S\left\{ \pi \left[ u_a v_b \chi ^\mathrm{M} [\rho _{ab}'] v_b^\dag u_a^\dag \right] \right\} - S\{u_a v_b \chi ^\mathrm{M} [\rho _{ab}'] v_b^\dag u_a^\dag \}\nonumber \\= & {} S\left\{ \pi \left[ \chi ^M [ \rho '_{ab} ]\right] \right\} - S\left\{ \chi ^M [ \rho '_{ab} ]\right\} = C_\mathrm{M}[\rho '_{ab}]. \end{aligned}$$
(92)

From Eq. (93), one can further get

$$\begin{aligned} \pi [\chi [\rho _{ab} ]] = u_a v_b\pi [ \chi [\rho _{ab}']] v_b^\dag u_a^\dag . \end{aligned}$$
(93)

Using the definition of the exact classical correlation given in Eq. (15), one can obtain

$$\begin{aligned} C_\mathrm{Z}[\rho _{ab}]= & {} \max _{\chi [\rho _{ab}]} \{S\{\pi [\chi [\rho _{ab}]]\}-S\{\chi [\rho _{ab}]\}\nonumber \\= & {} \max _{\chi [\rho '_{ab}]} \{S\{u_a v_b\pi [ \chi [\rho _{ab}']] v_b^\dag u_a^\dag \}-S\{u_a v_b\chi [\rho '_{ab}] v_b^\dag u_a^\dag \}\}\nonumber \\= & {} \max _{\chi [\rho '_{ab}]} \{S\{ \pi [ \chi [\rho _{ab}']] \}-S\{\chi [\rho '_{ab}] \} \} = C_\mathrm{Z}[\rho '_{ab}]. \end{aligned}$$
(94)

At the same time, one can arrive at

$$\begin{aligned} \chi ^\mathrm{Z} [\rho _{ab} ] = u_a v_b \chi ^\mathrm{Z} [\rho _{ab}'] v_b^\dag u_a^\dag . \end{aligned}$$
(95)

Utilizing Eqs. (16) and (99), one gets

$$\begin{aligned} D_\mathrm{Z}[\rho _{ab}]= & {} S\{\chi ^\mathrm{Z} [\rho _{ab} ] \}- S\{\rho _{ab}\} =S\{ u_a v_b \chi ^\mathrm{Z} [\rho _{ab}'] v_b^\dag u_a^\dag \}- S\{\rho '_{ab}\} \nonumber \\= & {} S\{\chi ^\mathrm{Z} [\rho '_{ab} ] \}- S\{\rho '_{ab}\}= D_\mathrm{Z}[\rho '_{ab}]. \end{aligned}$$
(96)

As has been stressed in Eq. (19), \(C_\mathrm{R}[\rho _{ab}]\) equals to \( C_\mathrm{Z}[\rho _{ab}] \). Hence, according to \(C_\mathrm{Z}[\rho _{ab}] = C_\mathrm{Z}[\rho _{ab}']\), one can directly get \(C_\mathrm{R}[\rho _{ab}] = C_\mathrm{R}[\rho _{ab}']\). Moreover, according to the definition in Eq. (20), one obtains

$$\begin{aligned} Q_\mathrm{R}[\rho _{ab}]= T [\rho _{ab}]-C_\mathrm{R}[\rho _{ab}]= T [\rho _{ab}']-C_\mathrm{R}[\rho _{ab}']=Q_\mathrm{R}[\rho _{ab}']. \end{aligned}$$
(97)

\(\square \)

Corollary

In the case of \(\rho _{ab} = u_a v_b \rho _{ab}' u_a^\dag v_b^\dag \) with u and v being unitary operators, \(L_\mathrm{M}[\rho _{ab}] = L_\mathrm{M}[\rho _{ab}']\) and \(L_\mathrm{Z}[\rho _{ab}] = L_\mathrm{Z}[\rho _{ab}']\).

Proof

Using \(T[\rho _{ab}] = T[\rho '_{ab}], D_\mathrm{M}[\rho _{ab}] = D_\mathrm{M}[\rho _{ab}']\) and \(C_\mathrm{M}[\rho _{ab}] = C_\mathrm{M}[\rho _{ab}']\) as well as the additivity relation given in Eq. (14), one can easily get \(L_\mathrm{M}[\rho _{ab}] = L_\mathrm{M}[\rho _{ab}']\). Similarly, in terms of \(T[\rho _{ab}] = T[\rho '_{ab}], D_\mathrm{Z}[\rho _{ab}] = D_\mathrm{Z}[\rho _{ab}'], C_\mathrm{Z}[\rho _{ab}] = C_\mathrm{Z}[\rho _{ab}']\) and the additivity relation shown in Eq. (18) as well, one is readily to obtain \(L_\mathrm{Z}[\rho _{ab}] = L_\mathrm{Z}[\rho _{ab}']\). \(\square \)

Appendix 2

Partial derivatives in Sect. 3.2 in MPSVW method.

$$\begin{aligned} \frac{\partial S\{\chi [{\rho _{yz}^e}]\} }{\partial \alpha _2}= & {} \ \{2[\mathcal {G}(f_3,f_2,\alpha _2){-}\mathcal {G}(f_1,f_0,\alpha _2)]\sin \alpha _1 \cos \alpha _1 \nonumber \\&+\, \sqrt{\eta (1-\eta )}\xi \zeta \sin {2\alpha _2}\cos {2\alpha _1}\cos \omega \} \left[ \log _2 p_{yz}^{(10)}-\log _2 p_{yz}^{(00)}\right] \nonumber \\&+ \, \{2[\mathcal {G}(f_2,f_3,\alpha _2)-\mathcal {G}(f_0,f_1,\alpha _2)]\sin \alpha _1 \cos \alpha _1 \nonumber \\&- \, \sqrt{\eta (1-\eta )}\xi \zeta \sin {2\alpha _2}\cos {2\alpha _1}\cos \omega \} \left[ \log _2 p_{yz}^{(11)}- \log _2 p_{yz}^{(10)}\right] , \end{aligned}$$
(98)
$$\begin{aligned} \frac{\partial S\{\chi [{\rho _{yz}^e}]\} }{\partial \alpha _2}= & {} \ \{2[\mathcal {G}(f_3,f_1,\alpha _1){-}\mathcal {G}(f_2,f_0,\alpha _1)]\sin \alpha _2 \cos \alpha _2 \nonumber \\&+\, \sqrt{\eta (1{-}\eta )}\xi \zeta \sin {2\alpha _1}\cos {2\alpha _2}\cos \omega \} \left[ \log _2 p_{yz}^{(01)}{-}\log _2 p_{yz}^{(00)}\right] \nonumber \\&+\, \{2[\mathcal {G}(f_1,f_3,\alpha _1){-}\mathcal {G}(f_0,f_2,\alpha _1)]\sin \alpha _2 \cos \alpha _2 \nonumber \\&-\, \sqrt{\eta (1{-}\eta )}\xi \zeta \sin {2\alpha _1}\cos {2\alpha _2}\cos \omega \} \left[ \log _2 p_{yz}^{(11)}{-} \log _2 p_{yz}^{(10)}\right] ,\end{aligned}$$
(99)
$$\begin{aligned} \frac{\partial S\{\chi [{\rho _{yz}^e}]\} }{\partial \omega }= & {} \ \frac{1}{2}\sqrt{\eta (1-\eta )}\xi \zeta \sin {2\alpha _1}\sin {2\alpha _2}\sin \omega \nonumber \\&\times \, \left[ \log _2 p_{yz}^{(00)}+\log _2 p_{yz}^{(11)}-\log _2 p_{yz}^{(01)} -\log _2 p_{yz}^{(10)} \right] . \end{aligned}$$
(100)

If \((\alpha _1, \alpha _2, \omega )=(0,0,0) \) or \((\frac{\pi }{4},\frac{\pi }{4},0) \), then \(\frac{\partial S\{\chi [{\rho _{yz}^e}]\} }{\partial \alpha _2}=0, \frac{\partial S\{\chi [{\rho _{yz}^e}]\} }{\partial \alpha _2}=0\) and \(\frac{\partial S\{\chi [{\rho _{yz}^e}]\} }{\partial \omega }=0\).

Appendix 3

Partial derivatives in Sect. 3.2 in Zhang method.

$$\begin{aligned} \frac{\partial \mathcal {C}}{\partial \alpha _1}= & {} \ -\frac{1}{2} \sin \alpha _1 \cos \alpha _1 (f_{23}-f_{01})\left[ \log _2 \left( p_{yz}^{(00)}+p_{yz}^{(01)}\right) -\log _2\left( p_{yz}^{(10)}+p_{yz}^{(11)}\right) \right] \nonumber \\&- \ \{2[\mathcal {G}(f_3,f_2,\alpha _2)-\mathcal {G}(f_1,f_0,\alpha _2)]\sin \alpha _1 \cos \alpha _1 \nonumber \\&+\ \sqrt{\eta (1-\eta )}\xi \zeta \sin {2\alpha _2}\cos {2\alpha _1}\cos \omega \} \left[ \log _2 p_{yz}^{(10)}-\log _2 p_{yz}^{(00)}\right] \nonumber \\&-\ \{2[\mathcal {G}(f_2,f_3,\alpha _2)-\mathcal {G}(f_0,f_1,\alpha _2)]\sin \alpha _1 \cos \alpha _1 \nonumber \\&-\ \sqrt{\eta (1-\eta )}\xi \zeta \sin {2\alpha _2}\cos {2\alpha _1}\cos \omega \} \left[ \log _2 p_{yz}^{(11)}- \log _2 p_{yz}^{(10)}\right] ,\end{aligned}$$
(101)
$$\begin{aligned} \frac{\partial \mathcal {C}}{\partial \alpha _2}= & {} \ -\frac{1}{2} \sin \alpha _1 \cos \alpha _1 (f_{23}-f_{01})\left[ \log _2 (p_{yz}^{(00)}+p_{yz}^{(10)}) -\log _2(p_{yz}^{(01)}+p_{yz}^{(11)}) \right] \nonumber \\&-\ \{2[\mathcal {G}(f_3,f_1,\alpha _1)-\mathcal {G}(f_2,f_0,\alpha _1)]\sin \alpha _2 \cos \alpha _2 \nonumber \\&+\ \sqrt{\eta (1-\eta )}\xi \zeta \sin {2\alpha _1}\cos {2\alpha _2}\cos \omega \} \left[ \log _2 p_{yz}^{(01)}-\log _2 p_{yz}^{(00)}\right] \nonumber \\&-\ \{2[\mathcal {G}(f_1,f_3,\alpha _1)-\mathcal {G}(f_0,f_2,\alpha _1)]\sin \alpha _2 \cos \alpha _2 \nonumber \\&-\ \sqrt{\eta (1-\eta )}\xi \zeta \sin {2\alpha _1}\cos {2\alpha _2}\cos \omega \} \left[ \log _2 p_{yz}^{(11)}- \log _2 p_{yz}^{(10)}\right] ,\end{aligned}$$
(102)
$$\begin{aligned} \frac{\partial \mathcal {C}}{\partial \omega }= & {} \ -\frac{1}{2}\sqrt{\eta (1-\eta )}\xi \zeta \sin {2\alpha _1}\sin {2\alpha _2}\sin \omega \nonumber \\&\times \ \left[ \log _2 p_{yz}^{(00)}+\log _2 p_{yz}^{(11)}-\log _2 p_{yz}^{(01)} -\log _2 p_{yz}^{(10)} \right] . \end{aligned}$$
(103)

Obviously, \(\frac{\partial \mathcal {C}}{\partial \alpha _1}=\frac{\partial }{\partial \alpha _2}=\frac{\partial \mathcal {C}}{\partial \omega }=0\) in the case that \((\alpha _1, \alpha _2, \omega )=(0,0,0) \) or \((\frac{\pi }{4},\frac{\pi }{4},0)\).

Appendix 4

Explanation of quantity \(L_Z[\rho _{ab}]\).

According to Eqs. (8) and (17), one can get

$$\begin{aligned} L_Z[\rho _{ab}]= S\{\pi [\chi ^Z[\rho _{ab}]]\}-S\{\pi [\rho _{ab}]\}. \end{aligned}$$
(104)

Since \(S\{\pi [\chi ^Z[\rho _{ab}]]\}\) and \(S\{\pi [\rho _{ab}]\}\) can be expressed as

$$\begin{aligned} S\{\pi [\chi ^Z[\rho _{ab}]]\}= & {} S\{tr_b[\pi [\chi ^Z[\rho _{ab}]]]\}+S\{tr_a[\pi [\chi ^Z[\rho _{ab}]]]\},\end{aligned}$$
(105)
$$\begin{aligned} S\{\pi [\rho _{ab}]\}= & {} S\{tr_b[\pi [\rho _{ab}]]\}+S\{tr_a[\pi [\rho _{ab}]], \end{aligned}$$
(106)

combining Eqs. (108) and (109), one can get

$$\begin{aligned} L_Z[\rho _{ab}]= & {} S\{tr_b[\pi [\chi ^Z[\rho _{ab}]]]\}-S\{tr_b[\pi [\rho _{ab}]]\}\nonumber \\&+S\{tr_a[\pi [\chi ^Z[\rho _{ab}]]]\}-S\{tr_a[\pi [\rho _{ab}]]\}. \end{aligned}$$
(107)

Further, let

$$\begin{aligned}&L_a^Z \equiv S\{tr_b[\pi [\chi ^Z[\rho _{ab}]]]\}-S\{tr_b[\pi [\rho _{ab}]]\},\end{aligned}$$
(108)
$$\begin{aligned}&L_b^Z \equiv S\{tr_a[\pi [\chi ^Z[\rho _{ab}]]]\}-S\{tr_a[\pi [\rho _{ab}]]\}, \end{aligned}$$
(109)

easily one can see that \(L_a^Z\) actually denotes the uncertainty information in the particle a associated with the appropriate classical state \(\chi ^Z[\rho _{ab}]\) and \(L_b^Z\) represents that in the particle b. In this situation, for the bipartite quantum state \(\rho _{ab}\), the quantity

$$\begin{aligned} L_Z[\rho _{ab}]= L_a^Z + L_b^Z \end{aligned}$$
(110)

just represents the sum of uncertainty information of single particle a and that of b.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, C., Liu, Y., Chen, J. et al. Study of quantum correlation swapping with relative entropy methods. Quantum Inf Process 15, 809–832 (2016). https://doi.org/10.1007/s11128-015-1209-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1209-4

Keywords

Navigation