Skip to main content
Log in

Opportunistic quantum network coding based on quantum teleportation

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

It seems impossible to endow opportunistic characteristic to quantum network on the basis that quantum channel cannot be overheard without disturbance. In this paper, we propose an opportunistic quantum network coding scheme by taking full advantage of channel characteristic of quantum teleportation. Concretely, it utilizes quantum channel for secure transmission of quantum states and can detect eavesdroppers by means of quantum channel verification. What is more, it utilizes classical channel for both opportunistic listening to neighbor states and opportunistic coding by broadcasting measurement outcome. Analysis results show that our scheme can reduce the times of transmissions over classical channels for relay nodes and can effectively defend against classical passive attack and quantum active attack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ahlswede, R., Cai, N., Li, S.: Network information flow. IEEE Trans. Inf. Theory 46(4), 1204–1216 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Koutsonikolas, D., Hu, Y.C., Wang, C.C.: An empirical study of performance benefits of network coding in multihop wireless networks. In: Proceedings of IEEE INFOCOM, pp. 2981–2985 (2009)

  3. Katti, S., Rahul, H., Hu, W., et al.: XORs in the air: practical wireless network coding. IEEE/ACM Trans. Netw. 16(3), 497–510 (2008)

    Article  Google Scholar 

  4. Hayashi, M., Iwama, K.: Quantum network coding. In: Proceedings of 2007 Symposium. Theoretical Aspects of Computer Science. Lecture Notes in Computer Science, vol. 4393, pp. 610–621 (2007)

  5. Hayashi, M.: Prior entanglement between senders enables perfect quantum network coding with modification. Phys. Rev. A 76(4), 1–5 (2007)

    Article  MathSciNet  Google Scholar 

  6. Kobayashi, H., Gall, F.L., Nishimura, H., et al: Perfect quantum network communication protocol based on classical network coding. In: Proceedings of 2010 IEEE International Symposium on Information Theory(ISIT2010), Austin, Texas, USA, pp. 2686–2690 (2010)

  7. Kobayashi, H., Gall, F.L., Nishimura, H., et al.: General Scheme for Perfect Quantum Network Coding with free Classical Communication. Automata, Languages and Programming, vol. 5555, pp. 622–633. Springer, Berlin (2009)

  8. Kobayashi, H., Gall, F.L., Nishimura, H., et al: Constructing quantum network coding schemes from classical nonlinear protocols. In: Proceedings of 2011 IEEE International Symposium on Information Theory(ISIT2011), pp. 109–113 (2011)

  9. Jain, A., Franceschetti, M., Meyer, D.A.: On quantum network coding. J. Math. Phys. 52, 032201 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Satoh, T., Gall, F.L., Imai, H.: Quantum network coding for quantum repeater. Phys. Rev. A 86(3), 1–8 (2012)

    Article  Google Scholar 

  11. Shang, T., Li, J., Liu, J.W.: Quantum network coding for general repeater networks. Quantum Inf. Process. 14(8), 3533–3552 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Ma, S.Y., Chen, X.B.: Probabilistic quantum network coding of M-qudit states over the butterfly network. Opt. Commun. 283, 497–501 (2010)

    Article  ADS  Google Scholar 

  13. Leung, D., Oppenheim, J., Winter, A.: Quantum network communication-the butterfly and beyond. IEEE Trans. Inf. Theory 56, 3478–3490 (2010)

    Article  MathSciNet  Google Scholar 

  14. Shang, T., Zhao, X.J., Liu, J.W.: Quantum network coding based on controlled teleportation. IEEE Commun. Lett. 18(5), 865–868 (2014)

    Article  ADS  Google Scholar 

  15. Sebastian, N., Florian, M., et al.: Air-to-ground quantum communication. Nat. Photon. Lett. 3(7), 382–386 (2013)

    Google Scholar 

  16. Bennett, C.H., Brassard, G., Crepeau, C.: Teleportation an unknown quantum state via dual classical and EPR channel. Phys. Rev. Lett. 70(13), 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Bennett, C.H., Brassard, G.: An update on quantum cryptography. Adv. Cryptol. 84, 475–480 (1984)

    MathSciNet  Google Scholar 

  18. Zeng, G.H.: Quantum identity authentication without lost of quantum channel. ChinaCrypt’2004, pp. 141–146 (2004)

Download references

Acknowledgments

Project supported by the National Natural Science Foundation of China (No. 61571024,61272501), the National Basic Research Program of China (No. 2012CB315905), the Research Promotion Grants-in-Aid for KUT Graduates of Special Scholarship Program and the Fundamental Research Funds for Central Universities (No. YWF15GJSYS059) for valuable helps.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Shang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, T., Du, G. & Liu, Jw. Opportunistic quantum network coding based on quantum teleportation. Quantum Inf Process 15, 1743–1763 (2016). https://doi.org/10.1007/s11128-015-1219-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1219-2

Keywords

Navigation