Skip to main content
Log in

Deterministic controlled remote state preparation using partially entangled quantum channel

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we propose a novel scheme for deterministic controlled remote state preparation (CRSP) of arbitrary two-qubit states. Suitably chosen partially entangled state is used as the quantum channel. With proper projective measurements carried out by the sender and controller, the receiver can reconstruct the target state by means of appropriate unitary operation. Unit success probability can be achieved for arbitrary two-qubit states. Different from some previous CRSP schemes utilizing partially entangled channels, auxiliary qubit is not required in our scheme. We also show that the success probability is independent of the parameters of the partially entangled quantum channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)

    Article  ADS  Google Scholar 

  4. Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  5. Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)

    Article  ADS  Google Scholar 

  6. Devetak, I., Berger, T.: Low-entanglement remote state preparation. Phys. Rev. Lett. 87, 197901 (2001)

    Article  ADS  Google Scholar 

  7. Berry, D.W., Sanders, B.C.: Optimal remote state preparation. Phys. Rev. Lett. 90, 057901 (2003)

    Article  ADS  Google Scholar 

  8. Abeyesinghe, A., Hayden, P.: Generalized remote state preparation: trading cbits, qubits, and ebits in quantum communication. Phys. Rev. A 68, 062319 (2003)

    Article  ADS  Google Scholar 

  9. Leung, D.W., Shor, P.W.: Oblivious remote state preparation. Phys. Rev. Lett. 90, 127905 (2003)

    Article  ADS  Google Scholar 

  10. Ye, M.Y., Zhang, Y.S., Guo, G.C.: Faithful remote state preparation using finite classical bits and a nonmaximally entangled state. Phys. Rev. A 69, 022310 (2004)

    Article  ADS  Google Scholar 

  11. Peng, X.H., Zhu, X.W., Fang, X.M., Feng, M., Liu, M.L., Gao, K.L.: Experimental implementation of remote state preparation by nuclear magnetic resonance. Phys. Lett. A 306, 271 (2003)

    Article  ADS  Google Scholar 

  12. Xiang, G.Y., Li, J., Yu, B., Guo, G.C.: Remote preparation of mixed states via noisy entanglement. Phys. Rev. A 72, 012315 (2005)

    Article  ADS  Google Scholar 

  13. Peters, N.A., Barreiro, J.T., Goggin, M.E., Wei, T.C., Kwiat, P.G.: Remote state preparation: arbitrary remote control of photon polarization. Phys. Rev. Lett. 94, 150502 (2005)

    Article  ADS  Google Scholar 

  14. Liu, W.T., Wu, W., Ou, B.Q., Chen, P.X., Li, C.Z., Yuan, J.M.: Experimental remote preparation of arbitrary photon polarization states. Phys. Rev. A 76, 022308 (2007)

    Article  ADS  Google Scholar 

  15. Rosenfeld, W., Berner, S., Volz, J., Weber, M., Weinfurter, H.: Remote preparation of an atomic quantum memory. Phys. Rev. Lett. 98, 050504 (2007)

    Article  ADS  Google Scholar 

  16. Barreiro, J.T., Wei, T.C., Kwiat, P.G.: Remote preparation of single-photon “hybrid” entangled and vector-polarization states. Phys. Rev. Lett. 105, 030407 (2010)

    Article  ADS  Google Scholar 

  17. Wang, Z.Y., Liu, Y.M., Zuo, X.Q., Zhang, Z.J.: Controlled remote state preparation. Commun. Theor. Phys. 52, 235 (2009)

    Article  ADS  MATH  Google Scholar 

  18. Hou, K., Wang, J., Yuan, H., Shi, S.H.: Multiparty-controlled remote preparation of two-particle state. Commun. Theor. Phys. 52, 848 (2009)

    Article  ADS  MATH  Google Scholar 

  19. Luo, M.X., Chen, X.B., Ma, S.Y., Yang, Y.X., Hu, Z.M.: Remote preparation of an arbitrary two-qubit state with three-party. Int. J. Theor. Phys. 49, 1262 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, Z.Y.: Controlled remote preparation of a two-qubit state via an asymmetric quantum channel. Commun. Theor. Phys. 55, 244 (2011)

    Article  ADS  MATH  Google Scholar 

  21. Song, J.F., Wang, Z.Y.: Controlled remote preparation of a two-qubit state via positive operator-valued measure and two three-qubit entanglements. Int. J. Theor. Phys. 50, 2410 (2011)

    Article  MATH  Google Scholar 

  22. Li, Z., Zhou, P.: Probabilistic multiparty-controlled remote preparation of an arbitrary m-qubit state via positive operator-valued measurement. Int. J. Quantum Inf. 10, 1250062 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Guan, X.W., Chen, X.B., Yang, Y.X.: Controlled-joint remote preparation of an arbitrary two-qubit state via non-maximally entangled channel. Int. J. Theor. Phys. 51, 3575 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang, D., Ye, L.: Multiparty-controlled joint remote state preparation. Quantum Inf. Process 12, 3223 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Liu, L.L., Hwang, T.: Controlled remote state preparation protocols via AKLT states. Quantum Inf. Process. 13, 1639 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Wang, C., Zeng, Z., Li, X.H.: Controlled remote state preparation via partially entangled quantum channel. Quantum Inf. Process. 14, 1077 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. An, N.B., Bich, C.T.: Perfect controlled joint remote state preparation independent of entanglement degree of the quantum channel. Phys. Lett. A 378, 3582 (2014)

    Article  ADS  MATH  Google Scholar 

  28. Li, X.H., Ghose, S.: Control power in perfect controlled teleportation via partially entangled channels. Phys. Rev. A 90, 052305 (2014)

    Article  ADS  Google Scholar 

  29. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We are grateful to the patient and professional guidance of the anonymous reviewers. This work is supported by the National Natural Science Foundation of China (Grant Nos. 61372076, 61301171) and the 111 Project (Grant No. B08038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, N., Quan, D.X., Yang, H. et al. Deterministic controlled remote state preparation using partially entangled quantum channel. Quantum Inf Process 15, 1719–1729 (2016). https://doi.org/10.1007/s11128-015-1226-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1226-3

Keywords

Navigation