Abstract
In this work, the concept of quantum Fisher information (QFI) is used to characterize the quantum transitions and factorization transitions in one-dimensional anisotropic XY models with periodic coupling interaction and quasiperiodic one. For the periodic-two model, it is found that the Ising transition and anisotropic transition can be distinctively illustrated by the evolution of QFI and its first-order derivatives, confirmed additionally by the scaling behavior. For the quasiperiodic Fibonacci chain, the number of quantum phase transitions increases from one to the lth Fibonacci number \(F_{l}\) when the anisotropic parameter \(\gamma \) approaches zero. The phase diagram for the approximant \(F_{l}=8 \) is derived as an example. In addition, the factorization transition in the two models can be marked by the correlation quantity defined from the QFI. The present work demonstrates the implication of the QFI as a general fingerprint to characterize the quantum transitions and factorization transitions.








Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press, New York (1976)
Holevo, A.S.: Statistical Structure of Quantum Theory. North-Holland, Amsterdam (1982)
Fisher, R.A.: Theory of statistical estimation. Proc. Camb. Philos. Soc. 22, 700 (1925)
Facchi, P., Kulkarni, R., Man’ko, V.I., Marmo, G., Sudarshan, E.C.G., Ventriglia, F.: Classical and quantum Fisher information in the geometrical formulation of quantum mechanics. Phys. Lett. A 374, 4801 (2010)
Braunstein, S.L., Caves, C.M.: Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72, 3439 (1994)
Braunstein, S.L., Caves, C.M., Milburn, G.J.: Generalized uncertainty relations: theory, examples, and Lorentz invariance. Ann. Phys. 247, 135 (1996)
Hübner, M.: Explicit computation of the Bures distance for density-matrices. Phys. Lett. A 163, 239 (1992)
Hübner, M.: Computation of Uhlmann parallel transport for density-matrices and the Bures metric on 3-dimensional Hilbert-space. Phys. Lett. A 179, 226 (1993)
Boixo, S., Flammia, S.T., Caves, C.M., Geremia, J.M.: Generalized limits for single-parameter quantum estimation. Phy. Rev. Lett. 98, 090401 (2007)
Roy, S.M., Braunstein, S.L.: Exponentially enhanced quantum metrology. Phy. Rev. Lett. 100, 220501 (2008)
Boixo, S., Datta, A., Davis, M.J., Flammia, S.T., Shaji, A., Caves, C.M.: Quantum metrology: dynamics versus entanglement. Phy. Rev. Lett. 101, 040403 (2008)
Jin, G.R., Kim, S.W.: Storage of spin squeezing in a two-component Bose–Einstein condensate. Phy. Rev. Lett. 99, 170405 (2007)
Pezzé, L., Smeri, A.: Entanglement, nonlinear dynamics, and the Heisenberg limit. Phy. Rev. Lett. 102, 100401 (2009)
Monras, A., Paris, M.G.A.: Optimal quantum estimation of loss in bosonic channels. Phys. Rev. Lett. 98, 160401 (2007)
Ma, J., Huang, Y.X., Wang, X.G., Sun, C.P.: Quantum Fisher information of the Greenberger–Horne–Zeilinger state in decoherance channels. Phys. Rev. A 84, 022302 (2011)
Watanabe, Y., Sagawa, T., Ueda, M.: Optimal measurement on noisy quantum systems. Phys. Rev. Lett. 104, 020401 (2010)
Luo, S.L.: Quantum Fisher information and uncertainty relations. Lett. Math. Phys. 53, 243 (2000)
Luo, S.L.: Wigner–Yanase skew information vs.quantum Fisher information. Proc. Am. Math. Soc. 132, 885 (2004)
Li, N., Luo, S.L.: Entanglement detection via quantum Fisher information. Phys. Rev. A. 88, 014301 (2013)
Boixo, S., Monras, A.: Operational interpretation for global multipartite entanglement. Phys. Rev. Lett. 100, 100503 (2008)
Hyllus, P., Laskowski, W., Kridchek, R., Schwemmer, C., Wieczorek, W., Weinfurter, H., Pezze, L., Smerzi, A.: Fisher information and multiparticle entanglement. Phys. Rev. A 85, 022321 (2012)
Sun, Z., Ma, J., Lu, X.-M., Wang, X.G.: Fisher information in a quantum-critical environment. Phys. Rev. A 82, 022306 (2010)
Invernizzi, C., Korbman, M., Venuti, L.C., Paris, M.G.A.: Optimal quantum estimation in spin systems at criticality. Phys. Rev. A 78, 042106 (2008)
Zanardi, P., Paris, M.G.A., Venuti, L.C.: Quantum criticality as a resource for quantum estimation. Phys. Rev. A 78, 042105 (2008)
Salvatori, G., Mandarino, A., Paris, M.G.A.: Quantum metrology in Lipkin–Meshkov–Glick critical systems. Phys. Rev. A 90, 022111 (2014)
Wang, T.-L., Wu, L.-N., Yang, W., Jin, G.-R., Lambert, N., Nori, F.: Quantum Fisher information as a signature of the superradiant quantum phase transition. New J. Phys. 16, 063039 (2014)
Liu, X.M., Du, Z.Z., Cheng, W.W., Liu, J.M.: Quantum Fisher information of localization transitions in one-dimensional systems. Int. J. Theor. Phys. 54, 3033 (2015)
Dagotto, E., Rice, T.M.: Surprises on the way from one- to two-dimensional quantum magnets: the ladder materials. Science 271, 618 (1996)
Nguyen, T.N., Lee, P.A., zurLoye, H.C.: Design of a random quantum spin chain paramagnet: \(Sr_3CuPt_0.5Ir_0.5o_6\). Science 271, 489 (1996)
Gambardella, P., Dallmeyer, A., Maiti, K., Malogoli, M., Eberhardt, W., Kern, K., Carbone, C.: Ferromagnetism in one-dimensional monatomic metal chains. Nature 416, 301 (2002)
Matsumoto, M., Normand, B., Rice, T.M., Sigrist, M.: Antiferromagnet–ferromagnet and structural phase transitions in \(La_{0.88}MnO_{x}\) manganites. Phys. Rev. B 69, 054432 (2004)
Dzyaloshinsky, I.: A thermodynamic theory of weak ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241 (1958)
Moriya, T.: Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91 (1960)
Dender, D.C., Hammar, P.R., Reich, D.H., Broholm, C., Aeppli, G.: Direct observation of field-induced incommensurate fluctuations in a one-dimensional \(S=1/2\) antiferromagnet. Phys. Rev. Lett. 79, 1750 (1997)
Kohgi, M., Iwasa, K., Mignot, J.M., Fak, B., Gegenwart, P., Lang, M., Ochiai, A., Aoki, H., Suzuki, T.: Staggered field effect on the one-dimensional \(S=1/2\) antiferromagnet \(Yb_{4 }As_{3}\). Phys. Rev. Lett. 86, 2439 (2001)
Tsukada, I., Takeya, J.T., Masuda, T., Uchinokura, K.: Two-stage spin-flop transitions in the \(S=1/2\) antiferromagnetic spin chain \(BaCu_{2}Si_{2}O_{7}\). Phys. Rev. Lett. 87, 127203 (2001)
Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517 (2008)
Raoul, D.: Quantum discord and quantum phase transition in spin chains. Phys. Rev. B 78, 224413 (2008)
Guo, J.L., Wei, J.L., Qin, W., Mu, Q.X.: Examining quantum correlations in the XY spin chain by local quantum uncertainty. Quantum Inf Process 14, 1429 (2015)
Cheng, W.W., Li, J.X., Shan, C.J., Gong, L.Y., Zhao, S.M.: Criticality, factorization and Wigner–Yanase Skew information in quantum spin chains. Quantum Inf Process 14, 2535 (2015)
Luo, S.L.: Fisher information, kinetic energy and uncertainty relation inequalities. J. Phys. A: Math. Gen. 35, 5181 (2002)
Gibbons, G.W.: Typical states and density matrics. J. Geom. Phys. 8, 147 (1992)
Frieden, B.R.: Physics from Fisher information: A Unification. Cambridge University Press, Cambridge (1998)
Shechtman, D., Blech, I., Gratias, D., Cahn, J.W.: Metallic Phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951 (1984)
Merlin, R., Bajema, K., Clarke, R., Juang, F.Y., Bhattacharya, P.K.: Quasiperiodic GaAs–AlAs heterostructures. Phys. Rev. Lett. 55, 1768 (1985)
Hida, K.: New universality class in spin-one-half Fibonacci Heisenberg chains. Phys. Rev. Lett. 93, 037205 (2004)
Luck, J.M.: Critical-behavior of the aperiodic quantum Ising chain in a transverse magnetic-field. J. Stat. Phys. 72, 417 (1993)
Zhong, M., Tong, P.Q.: The Ising and anisotropy phase transition of the periodic \(XY\) model in a transverse field. J. Phys. A: Math. Theor. 43, 505302 (2010)
Tong, P., Zhong, M.: Quantum phase transitions of periodic anisotropic \(XY\) chain in a transverse field. Phys. B 304, 91 (2001)
Campbell, S., Richens, J., Gullo, NLo: Criticality, factorization, and long-range correlations in the anisotropic \(XY\) model. Phys. Rev. A 88, 062305 (2013)
Roscilde, T., Verrucchi, P., Fubini, A., Haas, S., Tognetti, V.: Entanglement and factorized ground states in two-dimensional quantum antiferromagnets. Phys. Rev. Lett. 94, 147208 (2005)
Giampaplo, S.M., Adesso, G., Illuminati, F.: Theory of ground state factorization in quantum cooperative systems. Phys. Rev. Lett. 100, 197201 (2008)
Giampaplo, S.M., Adesso, G., Illuminati, F.: Separability and ground-state factorization in quantum spin systems. Phys. Rev. B 79, 224434 (2009)
Giampaplo, S.M., Adesso, G., Illuminati, F.: Probing quantum frustrated systems via factorization of the ground state. Phys. Rev. Lett. 104, 207202 (2010)
Tomasello, B., Rossini, D., Hamma, A., Amico, L.: Ground-state factorization and correlations with broken symmetry. EPL 96, 27002 (2011)
Luo, S.L., Fu, S.S., Oh, C.H.: Quantifying correlations via the Wigner–Yanase skew information. Phys. Rev. A 85, 032117 (2012)
Lieb, E., Schultz, T., Mattis, D.: 2 Soluble models of an antiferromagnetic chain. Ann. Phys. 16, 407 (1961)
Osenda, O., Huang, Z., Kais, S.: Entanglement localization by a single defect in a spin chain. Phys. Rev. A 74, 062316 (2003)
Huang, Z., Osenda, O., Kais, S.: Entanglement of formation for one-dimensional magnetic systems with defects. Phys. Lett. A 322, 137 (2004)
Tong, P.Q., Liu, X.X.: Lee-Yang Zeros of periodic and quasiperiodic anisotropic \(XY\) chains in a transverse Field. Phys. Rev. Lett. 97, 017201 (2006)
Dong, S., Liu, J.M., Cheong, S.W., Ren, Z.F.: Multiferroic materials and magnetoelectric physics: symmetry, entanglement, excitation, and topology. Adv. Phys. 64, 519 (2015)
Acknowledgments
This work was supported by the National 973 Projects of China (Grants No. 2015CB654602), the Natural Science Foundation of China (Grants Nos. 11234005, 11374147), and the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Liu, X.M., Du, Z.Z. & Liu, JM. Quantum Fisher information for periodic and quasiperiodic anisotropic XY chains in a transverse field. Quantum Inf Process 15, 1793–1810 (2016). https://doi.org/10.1007/s11128-015-1237-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-015-1237-0