Abstract
The Bayes cost of parameter estimation is studied for a quantum system which is influenced by an external environment, where the cost function is assumed to be a quadratic function of a difference between true and estimated values. When the reduced time evolution of a quantum system is determined by the time-dependent Lindblad equation, it is found how the Bayes cost changes with time. The Bayes cost increases monotonously with time for the Markovian environment, while it shows an oscillatory behavior for the non-Markovian environment due to the memory effect. Furthermore, in order to investigate how initial correlation between quantum system and environment, an analytic expression of the Bayes cost is derived for a qubit-oscillator system. It is found for both Markovian and non-Markovian environments that the Bayes cost can take a value smaller than the initial one in the presence of the initial correlation. The decrease in the Bayes cost is due to the backflow of information that is included in the initially correlated part.





Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press, New York (1976)
Holevo, A.S.: Probabilistic and Statistical Aspects of Quantum Theory. North-Holland, Amsterdam (1982)
Braunstein, S.L., Caves, C.M.: Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72, 3439–3443 (1994)
Paris, M.G.A., Řeháček, J. (eds.): Quantum Estimation Theory. Lecture Notes in Physics. Springer, Berlin (2010)
Pezzè, L., Smerzi, A.: Quantum theory of phase estimation. LANL arXiv:1411.5164 (2014)
Micadei, K., Rowlands, D.A., Pollock, F.A., Céleri, L.C., Serra, R.M., Modi, K.: Coherent measurements in quantum metrology. New J. Phys. 17, 023057 (2015)
Sasaki, M., Ban, M., Barnett, S.M.: Optimal parameter estimation of a depolarizing channel. Phys. Rev. A 66, 022308 (2002)
Weiss, U.: Quantum Dissipative Systems. World Scientific, Singapore (1993)
Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2006)
Wiseman, H.M., Milburn, G.J.: Quantum Measurement and Control. Cambridge University Press, Cambridge (2009)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Jaeger, G.: Quantum Information. Springer, Berlin (2007)
Jaeger, G.: Entanglement, Information, and the Interpretation of Quantum Mechanics. Springer, Berlin (2009)
Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-Markovian behavior of quantum processes in open systems. Phys. Rev. Lett. 103, 210401 (2009)
Vacchini, B., Smirne, A., Laine, E.-M., Piilo, J., Breuer, H.-P.: Markovianity and non-Markovianity in quantum and classical systems. New J. Phys. 13, 093004 (2011)
Chruściński, D., Kossakowski, A., Rivas, A.: Measures of non-Markovianity: divisibility versus backflow of information Phys. Rev. A 83, 052128 (2011)
Rivas, A., Huelga, S.F., Plenio, M.B.: Quantum non-Markovianity: characterization, quantification and detection. Rep. Prog. Phys. 77, 094001 (2014)
Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-Markovianity Phys. Rev. A 89, 042120 (2014)
Bellomo, B., Lo Franco, R., Compagno, G.: Non-Markovian effects on the dynamics of entanglement. Phys. Rev. Lett. 99, 160502 (2007)
Bellomo, B., Lo Franco, R., Compagno, G.: Entanglement dynamics of two independent qubits in environments with and without memory. Phys. Rev. A 77, 032342 (2008)
Bellomo, B., Lo Franco, R., Maniscalco, S., Compagno, G.: Entanglement trapping in structured environments. Phys. Rev. A 78, 060302 (2008)
Mazzola, L., Bellomo, B., Lo Franco, R., Compagno, G.: Connection among entanglement, mixedness, and nonlocality in a dynamical context. Phys. Rev. A 81, 052116 (2010)
Laine, E., Piilo, J., Breuer, H.: Measure for the non-Markovianity of quantum processes. Phys. Rev. 81, 062115 (2010)
Vasile, R., Maniscalco, S., Paris, M.G.A., Breuer, H., Piilo, J.: Quantifying non-Markovianity of continuous-variable Gaussian dynamical maps. Phys. Rev. 84, 052118 (2011)
Luo, S., Fu, S., Song, H.: Quantifying non-Markovianity via correlations. Phys. Rev. 86, 044101 (2012)
Bylicka, B., Chrusścński, D., Maniscalco, S.: Non-Markovianity and reservoir memory of quantum channels: a quantum information theory perspective. Sci. Rep. 4, 5720 (2014)
Pechukas, P.: Reduced dynamics need not be completely positive. Phys. Rev. Lett. 73, 1060–1062 (1994)
Jordan, T.F., Shaji, A., Sudarshan, E.C.G.: Dynamics of initially entangled open quantum systems. Phys. Rev. A 70, 052110 (2004)
Rodoriguez-Rosario, C.A., Modi, K., Kuah, A.-M., Shaji, A., Sudarshan, E.C.G.: Completely positive maps and classical correlations. J. Phys. A 41, 205301 (2008)
Devi, Usha, Rajagopal, A.R., Sudha, A.K.: Open-system quantum dynamics with correlated initial states, not completely positive maps, and non-Markovianity. Phys. Rev. A 83, 022109 (2011)
Laine, E.-M., Piilo, J., Breuer, H.-P.: Witness for initial system-environment correlations in open-system dynamics. Europhys. Lett. 92, 60010 (2010)
Smirne, A., Breuer, H.-P., Pillo, J., Vacchini, B.: Initial correlations in open-systems dynamics: the Jaynes-Cummings model. Phys. Rev. A 82, 062114 (2010)
Dajka, J., Luczka, J.: Distance growth of quantum states due to initial system-environment correlations. Phys. Rev. A 82, 012341 (2010)
Dajka, J., Luczka, J., Hänggi, P.: Distance between quantum states in the presence of initial qubit-environment correlations: a comparative study. Phys. Rev. A 84, 032120 (2011)
Ban, M., Kitajima, S., Shibata, F.: Qubit decoherence with an initial correlation. Phys. Lett. A 375, 2283–2290 (2011)
Ban, M., Kitajima, S., Shibata, F.: Distance between qubit states with initial system-environment correlation. Int. J. Theor. Phys. 51, 2419–2426 (2012)
Hu, Z., Wang, J., Zhang, Y.: Dynamics of nonclassical correlations with initial correlation. J. Phys. Soc. Jpn. 83, 114004 (2014)
Sarovar, M., Milburn, G.J.: Optimal estimation of one-parameter quantum channels. J. Phys. 39, 8487–8505 (2006)
Monras, A., Paris, M.G.A.: Optimal quantum estimation of loss in bosonic channels. Phys. Rev. Lett. 98, 160401 (2007)
Watanabe, Y., Sagawa, T., Ueda, M.: Optimal measurement on noisy quantum systems. Phys. Rev. Lett. 104, 020401 (2010)
Lu, X., Wang, X., Sun, C.P.: Quantum Fisher information flow and non-Markovian process of open systems. Phys. Rev. A 82, 042103 (2010)
Escher, B.M., de Matos Filho, R.L., Davidovich, L.: General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology. Nat. Phys. 7, 406–411 (2011)
Ma, J., Huang, Y., Wang, X., Sun, C.P.: Quantum Fisher information of the Greenberger-Horne-Zeilinger state in decoherence channels. Phys. Rev. A 84, 022302 (2011)
Chin, A.W., Huelga, S.F., Plenio, M.B.: Quantum metrology in non-Markovian environments. Phys. Rev. Lett. 109, 233601 (2012)
Berrada, K., Abdel-Khalek, S., Obada, A.-S.F.: Quantum Fisher information for a qubit system placed inside a dissipative cavity. Phys. Lett. A 376, 1412–1416 (2012)
Zhong, W., Sun, Z., Ma, J., Wang, X., Nori, F.: Fisher information under decoherence in Bloch representation. Phys. Rev. A 87, 022337 (2013)
Berrada, K.: Non-Markovian effect in the precision of parameter estimation. Phys. Rev. A 88, 035806 (2013)
Ozaydin, F.: Phase damping destroys quantum Fisher information of W states. Phys. Lett. 378, 3161–3164 (2014)
Alipour, S., Mehboudi, M., Rezakhani, A.T.: Quantum metrology in open systems: dissipative Cram’er-Rao bound. Phys. Rev. Lett. 112, 120405 (2014)
Ban, M.: Quantum Fisher information of a qubit initially correlated with a non-Markovian environment. Quant. Inf. Process. 14, 4163–4177 (2015)
Schirmer, S.G., Oi, D.K.L.: Two-qubit Hamiltonian tomography by Bayesian analysis of noisy data. Phys. Rev. A 80, 022333 (2009)
Schirmer, S.G., Langbein, F.C.: Quantum system identification: Hamiltonian estimation using spectral and Bayesian analysis. LANL quant-ph 0911.5429 (2009)
Schirmer, S.G., Oi, D.K.L.: Quantum system identification by Bayesian analysis of noisy data: beyond Hamiltonian tomography. Laser Phys. 20, 1203–1209 (2010)
Wiebe, N., Granade, C.: Efficient Bayesian phase estimation. LANL quant-ph 1508, 00869 (2009)
Macieszczak, K., Fraas, M., Demkowicz-Dobrzański, R.: Bayesian quantum frequency estimation in presence of collective dephasing. New J. Phys. 16, 113002 (2914)
Barndorff-Nielsen, O.E., Gill, R.D.: Fisher information in quantum statistics. J. Phys. A 33, 4481–4490 (2000)
Alicki, R., Lendi, K.: Quantum Dynamical Semigroups and Applications. Springer, Berlin (2007)
Rivas, A., Huelga, S.F.: Open Quantum Systems. Springer, Berlin (2011)
Personik, S.D.: Application of quantum estimation theory to analog communication over quantum channels. Trans. IEEE IT–17, 240–246 (1971)
Morozov, V.G., Mathey, S., Röpke, G.: Decoherence in an exactly solvable qubit model with initial qubit-environment correlations. Phys. Rev. A 85, 022101 (2012)
Ignatyuk, V.V., Morozov, V.G.: Enhancement of coherence in qubits due to interaction with the environment. Phys. Rev. A 91, 052102 (2015)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ban, M. Bayes cost of parameter estimation for a quantum system interacting with an environment. Quantum Inf Process 15, 2213–2230 (2016). https://doi.org/10.1007/s11128-016-1267-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-016-1267-2