Abstract
We propose two controlled quantum secure communication schemes by entanglement distillation or generalized measurement. The sender Alice, the receiver Bob and the controllers David and Cliff take part in the whole schemes. The supervisors David and Cliff can control the information transmitted from Alice to Bob by adjusting the local measurement angles \(\theta _4\) and \(\theta _3\). Bob can verify his secret information by classical one-way function after communication. The average amount of information is analyzed and compared for these two methods by MATLAB. The generalized measurement is a better scheme. Our schemes are secure against some well-known attacks because classical encryption and decoy states are used to ensure the security of the classical channel and the quantum channel.




Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)
Xiu, X.M., Dong, H.K., Li, D., Gao, Y.J., Chi, F.: Deterministic secure quantum communication using four-particle genuine entangled state and entangled swapping. Opt. Commun. 282, 2457–2459 (2009)
Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)
Chou, Y.H., Lin, Y.T., Zeng, G.J., Lin, F.J., Chen, C.Y.: Controlled bidirectional quantum secure direct communication. Sci. World J. 2014, 694678 (2014)
Li, Y.H., Li, X.L., Sang, M.H., Nie, Y.Y., Wang, Z.S.: Bidirectional controlled quantum teleportation and secure direct communication using five-qubit entangled state. Quantum Inf. Process 12, 3835–3844 (2013)
Li, D., Xiu, X.M., Gao, Y.J., Ren, Y.P., Liu, H.W.: Controlled three-party communication using GHZ-like state and imperfect Bell-state measurement. Opt. Commun. 284, 905–908 (2011)
Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger–Horne–Zeilinger state. Opt. Commun. 283, 192–195 (2010)
Shima, H., Monireh, H.: Efficient controlled quantum secure direct communication based on GHZ-like states. Quantum Inf. Process 14, 739–753 (2015)
Wang, J., Zhang, Q., Tang, C.J.: Multiparty controlled quantum secure direct communication using Greenberger–Horne–Zeilinger state. Opt. Commun. 266, 732–737 (2006)
Kao, S.H., Hwang, T.: Multiparty controlled quantumsecure direct communication based on quantum search algorithm. Quantum Inf. Process 12, 3791–3805 (2013)
Patwardhan, S., Moulick, S.R., Prasanta K.: Panigrahi Efficient Controlled Quantum Secure Direct Communication Protocols. arXiv:1509.05882v2
Li, X.H., Zhou, P., Liang, Y.J., Li, C.Y., Zhou, H.Y., Deng, F.G.: Quantum secure direct communication network with two-step protocol. Chin. Phys. Lett. 23, 1080–1083 (2006)
Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)
Wang, J., Zhang, Q., Tang, C.J.: Quantum secure communication scheme with W state. Commun. Theor. Phys. 48, 637–640 (2007)
Nguyen, B.A.: Efficient semi-direct three-party quantum secure exchange of information. Phys. Lett. A 360, 518–521 (2007)
Liu, Z.H., Chen, H.W., Liu, W.J., Xu, J., Wang, D., Li, Z.Q.: Quantum secure direct communication with optimal quantum superdense coding by using general four-qubit states. Quantum Inf. Process 12, 587–599 (2013)
Cao, W.F., Yang, Y.G., Wen, Q.Y.: Quantum secure direct communication with cluster states. Phys. Mech. Astron. 53, 1271–1275 (2010)
Sun, Z.W., Du, R.G., Long, D.Y.: Quantum secure direct communication with two-photon four-qubit cluster states. Int. J. Theor. Phys. 51, 1946–1952 (2012)
Bennett, C.H., Stephen, J.: Communication via one-and two-particle operators on Einstein–Podolsky–Rosen states. Phy. Rev. Lett. 69, 2881–2884 (1992)
Mattle, K., Weifurter, H., Kwiat, P.G., Zeilinger, A.: Dense coding in experimental quantum communication. Phys. Rev. Lett. 76, 4656–4659 (1996)
Hausladen, P., Jozsa, R., Schumacher, B., Westmoreland, M., Wotters, W.K.: Classical information capacity of a quantum channel. Phys. Rev. A 54, 1869–1876 (1996)
Liu, X.S., Long, G.L., Tong, D.M., Li, F.: General scheme for superdense coding between multiparties. Phys. Rev. A 65, 022304 (2002)
Fu, C.B., Xia, Y., Liu, B.X., Zhou, S.: Controlled quantum dense coding in a four-particle non-maximally entangled state via local measurement. J. Korean Phys. Soc. 46, 1080–1082 (2005)
Li, S.S.: Dense coding with cluster state via local measurement. Int. J. Theor. Phys. 51, 724–730 (2012)
Huang, J., Huang, G.Q.: Dense coding with extended GHZ-W state via local measurements. Int. J. Theor. Phys. 50, 2842–2849 (2011)
Yi, X.J., Wang, J.M., Huang, G.Q.: Controlled dense coding using generalized GHZ-type state. Int. J. Theor. Phys. 49, 376–383 (2010)
Braunstein, S.L., Kimble, H.J.: Dense coding for continuous variables. Phys. Rev. A 61, 042302 (2000)
Grudka, A., Wojcik, A.: Symmetric scheme for superdense coding between multiparties. Phys. Rev. A 66, 014301 (2002)
Zhang, Z.J., Man, Z.X., Li, Y.: Deterministic secure direct communication by using swapping quantum entanglement and local unitary operations. Chin. Phys. Lett. 22, 18–21 (2005)
Hao, J.C., Li, C.F., Guo, G.C.: Controlled dense coding using the Greenberger–Horne–Zeilinger state. Phys. Rev. A 63, 054301 (2001)
Huang, Y.B., Li, S.S., Nie, Y.Y.: Controlled dense coding between multi-parties. Int. J. Theor. Phys. 48, 95–100 (2009)
Jiang, D.Y., Wu, R.S., Li, S.S., Wang, Z.S.: Controlled dense coding with symmetric state. Int. J. Theor. Phys. 48, 2297–2304 (2009)
Bernstein, D.J., Buchmann, J., Dahmen, E.: Post-Quantum Cryptography. Springer, NewYork (2009)
Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Proc. IEEE Int. Conf. Comput. Syst. Signal Process. 175, 175–179 (1984)
Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)
Wang, X.B.: Fault tolerant quantum key distribution protocol with collective random unitary noise. Phys. Rev. A 72, 050304 (2005)
Tan, X.Q., Jiang, L.X.: Improved three-party quantum secret sharing based on bell states. Int. J. Theor. Phys. 52, 3577–3585 (2013)
Acknowledgments
The research is funded by National Natural Science Foundation of China, under Grant Nos. 61472165, 61401176 and 61502200, and Science and Technology Planning Project of Guangdong Province, China, under Grant Nos. 2013B010401018, 2014B090903008, 2015B010109006 and 2015B010128008, and Natural Science Foundation of Guangdong Province, China, under Grant No. 2014A030310245.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Tan, X., Zhang, X. Controlled quantum secure direct communication by entanglement distillation or generalized measurement. Quantum Inf Process 15, 2137–2154 (2016). https://doi.org/10.1007/s11128-016-1268-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-016-1268-1