Skip to main content
Log in

The statistical fluctuation analysis for the measurement-device-independent quantum key distribution with heralded single-photon sources

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we carry out statistical fluctuation analysis for the new proposed measurement-device-independent quantum key distribution with heralded single-photon sources and further compare its performance with the mostly often used light sources, i.e., the weak coherent source. Due to a significantly lower probability for events with two photons present on the same side of the beam splitter in former than in latter, it gives drastically reduced quantum bit error rate in the X basis and can thus show splendid behavior in real-life implementations even when taking statistical fluctuations into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Here the value of the coefficienct \(\gamma \) is dependent on \(\varepsilon \), e.g., \({\gamma }=5.3\) when \(\varepsilon =10^{-7}\), see Ref. [22]

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing (IEEE, New York), pp. 175–179 (1984)

  2. Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283, 2050 (1999)

    Article  ADS  Google Scholar 

  3. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441 (2000)

    Article  ADS  Google Scholar 

  4. Mayers, D.: Unconditional security in quantum cryptography. J. ACM 48, 351 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brassard, G., Lütkenhaus, N., Mor, T., Sanders, B.C.: Limitations on practical quantum cryptography. Phys. Rev. Lett. 85, 1330 (2000)

    Article  ADS  MATH  Google Scholar 

  6. Lütkenhaus, N.: Security against individual attacks for realistic quantum key distribution. Phys. Rev. A 61, 052304 (2000)

    Article  ADS  Google Scholar 

  7. Lütkenhaus, N., Jahma, M.: Quantum key distribution with realistic states: photon-number statistics in the photon-number splitting attack. New J. Phys. 4, 44.1 (2002)

    Article  Google Scholar 

  8. Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)

    Article  ADS  Google Scholar 

  9. Wang, X.B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005)

    Article  ADS  Google Scholar 

  10. Lo, H.K., Ma, X.F., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)

    Article  ADS  Google Scholar 

  11. Ma, X.F., Qi, B., Zhao, Y., Lo, H.K.: Practical decoy state for quantum key distribution. Phys. Rev. A 72, 012326 (2005)

    Article  ADS  Google Scholar 

  12. Braunstein, S.L., Pirandola, S.: Side-channel-free quantum key distribution. Phys. Rev. Lett. 108, 130502 (2012)

    Article  ADS  Google Scholar 

  13. Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)

    Article  ADS  Google Scholar 

  14. Wang, X.B.: Measurement-device-independent quantum key distribution. Phys. Rev. A 87, 012320 (2013)

    Article  ADS  Google Scholar 

  15. Wang, Q., Wang, X.B.: An efficient implementation of the decoy-state measurement-device-independent quantum key distribution with heralded single-photon sources. Phys. Rev. A 88, 052332 (2013)

    Article  ADS  Google Scholar 

  16. Wang, Q., Wang, X.B.: Simulating of the measurement-device independent quantum key distribution with phase randomized general sources. Sci. Rep. 4, 04612 (2014)

    ADS  Google Scholar 

  17. Curty, M., Xu, F., Cui, W., et al.: Finite-key analysis for measurement-device-independent quantum key distribution. Nat. Commun. 5, 3732 (2014)

    Article  ADS  Google Scholar 

  18. Rubenok, A., Slater, J.A., Chan, P., Lucio-Martinez, I., Tittel, W.: Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks. Phys. Rev. Lett. 111, 130501 (2013)

    Article  ADS  Google Scholar 

  19. Liu, Y., Chen, T.Y., Wang, L.J., et al.: Experimental measurement-device-independent quantum key distribution. Phys. Rev. Lett. 111, 130502 (2013)

    Article  ADS  Google Scholar 

  20. Yu, Z.W., Zhou, Y.H., Wang, X.B.: Three-intensity decoy-state method for measurement-device-independent quantum key distribution Phys. Phys. Rev. A 88, 062339 (2013)

    Article  ADS  Google Scholar 

  21. Xu, F., Qi, B., Liao, Z., Lo, H.K.: Long distance measurement-device-independent quantum key distribution with entangled photon sources. Appl. Phys. Lett. 103, 061101 (2013)

    Article  ADS  Google Scholar 

  22. Yu, Z.W., Zhou, Y.H., Wang, X.B.: Statistical fluctuation analysis for measurement-device-independent quantum key distribution with three-intensity decoy-state method Phys. Phys. Rev. A 91, 032318 (2015)

    Article  ADS  Google Scholar 

  23. Xu, F., Xu, H., Lo, H.K.: Protocol choice and parameter optimization in decoy-state measurement-device-independent quantum key distribution. Phys. Rev. A 89, 052333 (2014)

    Article  ADS  Google Scholar 

  24. Zhou, Y.H., Yu, Z.W., Wang, X.B.: Making the decoy-state measurement-device-independent quantum key distribution practically useful, arXiv:1502.01262

  25. Zhang, C.M., Li, M., Yin, Z.Q., et al.: Decoy-state measurement-device-independent quantum key distribution with mismatched-basis statistics. Sci. China Phys. Mech 58, 590301 (2015)

    Article  Google Scholar 

  26. Zhu, F., Zhou, X.Y., Liu, A.P., Wang, Q.: A new scheme on improving the performance of the quantum key distribution with two-intensity weak coherent light. Quantum Inf. Process. 14, 3773 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Chen, D., Shang-Hong, Z., Wei-Hu, Z., et al.: Analysis of measurement-device-independent quantum key distribution under asymmetric channel transmittance efficiency. Quantum Inf. Process. 13, 2525 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang, Q., Wang, X.B., Guo, G.C.: Practical decoy-state method in quantum key distribution with a heralded single-photon source. Phys. Rev. A 75, 012312 (2007)

    Article  ADS  Google Scholar 

  29. Wang, Q., Karlsson, A.: Performance enhancement of a decoy-state quantum key distribution using a conditionally prepared down-conversion source in the Poisson distribution. Phys. Rev. A 76, 014309 (2007)

    Article  ADS  Google Scholar 

  30. Wang, Q., Wang, X.B., Bjork, G., Karlsson, A.: Improved practical decoy state method in quantum key distribution with parametric down-conversion source. Europhys. Lett. 79, 4 (2007)

    MathSciNet  Google Scholar 

  31. Wang, Q., Chen, W., Xavier, G., et al.: Experimental decoy-state quantum key distribution with a sub-poissionian heralded single-photon source. Phys. Rev. Lett. 100, 090501 (2008)

    Article  ADS  Google Scholar 

  32. Mori, S., Söderholm, J., Namekata, N., Inoue, S.: On the distribution of 1550-nm photon pairs efficiently generated using a periodically poled lithium niobate waveguide. Opt. Commun. 264, 156–162 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support from the National Natural Science Foundation of China through Grant Nos. 11274178, 11311140250, 61475197, 61590932, the Natural Science Foundation of the Jiangsu Higher Education Institutions through Grant No. 15KJA120002, the Outstanding Youth Project of Jiangsu Province through Grant No. BK20150039 and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions Grant No. YX002001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, XY., Zhang, CH., Guo, GC. et al. The statistical fluctuation analysis for the measurement-device-independent quantum key distribution with heralded single-photon sources. Quantum Inf Process 15, 2455–2464 (2016). https://doi.org/10.1007/s11128-016-1279-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1279-y

Keywords

Navigation