Abstract
The entanglement quantification and classification of multipartite quantum states is an important research area in quantum information. In this paper, in terms of the reduced density matrices corresponding to all possible partitions of the entire system, a bounded entanglement measure is constructed for arbitrary-dimensional multipartite quantum states. In particular, for three-qubit quantum systems, we prove that our entanglement measure satisfies the relation of monogamy. Furthermore, we present a necessary condition for characterizing maximally entangled states using our entanglement measure.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661 (1991)
Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)
Yan, Y., Gu, W., Li, G.: Entanglement transfer from two-mode squeezed vacuum light to spatially separated mechanical oscillators via dissipative optomechanical coupling. Sci. China Phys. Mech. Astron. 58(5), 50306 (2015)
Bennett, C.H., Wiesner, S.J.: Communication via one-and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69(20), 2881 (1992)
Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829 (1999)
Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002)
Ye, T.: Fault tolerant channel-encrypting quantum dialogue against collective noise. Sci. China Phys. Mech. Astron. 58(4), 40301 (2015)
Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21, 467 (1982)
Zhang, C., Li, C.F., Guo, G.C.: Experimental demonstration of photonic quantum ratchet. Sci. Bull. 60(2), 249 (2015)
Lu, Y., Feng, G.R., Li, Y.S., Long, G.L.: Experimental digital quantum simulation of temporal-spatial dynamics of interacting fermion system. Sci. Bull. 60(2), 241 (2015)
Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484 (1997)
Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325 (1997)
Long, G.L.: Grover algorithm with zero theoretical failure rate. Phys. Rev. A 64(2), 022307 (2001)
Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)
Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)
Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996)
Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)
Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)
Vedral, V., Plenio, M.B., Rippin, M.A., Knight, P.L.: Quantifying entanglement. Phys. Rev. Lett. 78, 2275 (1997)
Brody, D.C., Hughston, L.P.: Geometric quantum mechanics. J. Geom. Phys. 38, 19 (2001)
Wei, T.C., Goldbart, P.M.: Geometric measure of entanglement and applications to bipartite and multipartite quantum states. Phys. Rev. A 68, 042307 (2003)
Yu, C.S., Zhou, L., Song, H.S.: Genuine tripartite entanglement monotone of \(\left(2\otimes 2\otimes n\right)\)-dimensional systems. Phys. Rev. A 77, 022313 (2008)
Dan, L., Xin, Z., Gui-Lu, L.: Multiple entropy measures for multi-particle pure quantum state. Commun. Theor. Phys. 54(5), 825 (2010)
Cao, Y., Li, H., Long, G.: Entanglement of linear cluster states in terms of averaged entropies. Chin. Sci. Bull. 58(1), 48 (2013)
Hong, Y., Gao, T., Yan, F.: Measure of multipartite entanglement with computable lower bounds. Phys. Rev. A 86, 062323 (2012)
Gao, T., Yan, F., van Enk, S.: Permutationally invariant part of a density matrix and nonseparability of N-qubit states. Phys. Rev. Lett. 112(18), 180501 (2014)
Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)
Bai, Y.K., Zhang, N., Ye, M.Y., Wang, Z.D.: Exploring multipartite quantum correlations with the square of quantum discord. Phys. Rev. A 88, 012123 (2013)
Osborne, T.J., Verstraete, F.: General monogamy inequality for bipartite qubit entanglement. Phys. Rev. Lett. 96, 220503 (2006)
Zhu, X.N., Fei, S.M.: Entanglement monogamy relations of qubit systems. Phys. Rev. A 90, 024304 (2014)
Bai, Y.K., Xu, Y.F., Wang, Z.D.: General monogamy relation for the entanglement of formation in multiqubit systems. Phys. Rev. Lett. 113, 100503 (2014)
Cornelio, M.F.: Multipartite monogamy of the concurrence. Phys. Rev. A 87, 032330 (2013)
Kim, J.S.: Strong monogamy of quantum entanglement for multiqubit W-class states. Phys. Rev. A 90, 062306 (2014)
de Oliveira, T.R., Cornelio, M.F., Fanchini, F.F.: Monogamy of entanglement of formation. Phys. Rev. A 89, 034303 (2014)
Fan, Y.J., Cao, H.X.: Monotonicity of the unified quantum (r, s)-entropy and (r, s)-mutual information. Quant. Inf. Process. 14(12), 4537 (2015). doi:10.1007/s11128-015-1126-6
Qin, M., Ren, Z.Z., Zhang, X.: Renormalization of the global quantum correlation and monogamy relation in the anisotropic Heisenberg XXZ model. Quant. Inf. Process. (2015). doi:10.1007/s11128-015-1167-x
Cao, H., Wu, Z.Q., Hu, L.Y., Xu, X.X., Huang, J.H.: An easy measure of quantum correlation. Quant. Inf. Process. 14(11), 4103 (2015). doi:10.1007/s11128-015-1071-4
Seevinck, M.P.: Monogamy of correlations versus monogamy of entanglement. Quant. Inf. Process. 9, 273 (2010)
Pawłowski, M.: Security proof for cryptographic protocols based only on the monogamy of Bell’s inequality violations. Phys. Rev. A 82, 032313 (2010)
Bennett, C.H.: The monogamy of entanglement, the ambiguity of the past, and the complexity of the present. In: Proceedings of the FQXi 4th International Conference, Vieques Island, Puerto Rico (2014)
Toner, B.: Monogamy of non-local quantum correlations. Proc. R. Soc. A 465, 59 (2009)
Brandao, F.G., Harrow, A.W.: Quantum de finetti theorems under local measurements with applications. In: Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing, New York, NY, USA, , pp. 861–870 (2013)
García-Sáez, A., Latorre, J.I.: Renormalization group contraction of tensor networks in three dimensions. Phys. Rev. B 87, 085130 (2013)
Ma, X., Dakic, B., Naylor, W., Zeilinger, A., Walther, P.: Quantum simulation of the wavefunction to probe frustrated Heisenberg spin systems. Nat. Phys. 7, 399 (2011)
Lloyd, S., Preskill, J.: Unitarity of black hole evaporation in final-state projection models. J. High Energy Phys. 08, 1 (2014)
Li, X., Li, D.: Classification of General n-qubit states under stochastic local operations and classical communication in terms of the rank of coefficient matrix. Phys. Rev. Lett. 108, 180502 (2012)
Wang, S., Lu, Y., Long, G.L.: Entanglement classification of \(2\times 2\times 2\times d\) quantum systems via the ranks of the multiple coefficient matrices. Phys. Rev. A 87, 062305 (2013)
Wang, S., Lu, Y., Gao, M., Cui, J., Li, J.: Classification of arbitrary-dimensional multipartite pure states under stochastic local operations and classical communication using the rank of coefficient matrix. J. Phys. A Math. Theor. 46, 105303 (2013)
Huang, Y., Wen, J., Qiu, D.: Practical full and partial separability criteria for multipartite pure states based on the coefficient matrix method. J. Phys. A Math. Theor. 42, 425306 (2009)
Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)
Uhlmann, A.: The transition probability in the state space of a \(\ast \)-algebra. Rep. Math. Phys. 9, 273 (1976)
Dodd, J.L., Nielsen, M.A.: A simple operational interpretation of the fidelity. Phys. Rev. A 66, 044301 (2001)
Bruß, D.: Characterizing entanglement. J. Math. Phys. 43, 4237 (2002)
Ren, X.J., Jiang, W.: Entanglement monogamy inequality in a \(2\otimes 2\otimes 4\) system. Phys. Rev. A 81, 024305 (2010)
Brown, I.D.K., Stepney, S., Sudbery, A., Braunstein, S.L.: Searching for highly entangled multi-qubit states. J. Phys. A Math. Gen. 38, 1119 (2005)
Higuchi, A., Sudbery, A.: How entangled can two couples get? Phys. Lett. A 273, 213 (2000)
Author information
Authors and Affiliations
Corresponding authors
Additional information
This project was supported by the National Natural Science Foundation of China (Grant Nos. 11271217, 11175094 and 91221205) and the National Basic Research Program of China (Grant No. 2015CB921002).
Appendices
Appendix 1
Here we introduce the concept of the coefficient matrix. Every pure state \(\left| \psi \right\rangle \) in system \({\mathcal {H}}^{d_1}\otimes {\mathcal {H}}^{d_2}\otimes \cdots \otimes {\mathcal {H}}^{d_n}\) can be represented as
where, for \(j=0,1,\ldots ,{\prod _{k=1}^n d_k -1}\), coefficients \(\lambda _j\) are complex numbers satisfying
and \(\left| t_j\right\rangle \) are the basis states in \({\mathcal {H}}\).
We denote the n systems by numbers \(1,2,\ldots ,n\), respectively. Let \(q_i \ (i=1,2,\ldots n)\) be positive integers such that \(0\leqslant q_i \leqslant d_i -1\), then the state \(\left| \psi \right\rangle \) can be rewritten as
which induces the following \(\left( \prod _{i=1}^l d_i\right) \times \left( \prod _{i=l+1}^n d_i\right) \) coefficient matrices whose entries \(a_{q_1 q_2\ldots q_n}\) are arranged according to the subscript \(q_1 q_2\ldots q_n\) in lexicographical ascending order
We abbreviate the coefficient matrix \(M_{1\cdots l,l+1\cdots n}(\left| \psi \right\rangle )\) as \(M_{1\cdots l}(\left| \psi \right\rangle )\) by omitting the column subscripts \(l+1\cdots n\). Each realignment of the n particles, described simply as \({s_1s_2\cdots s_ls_{l+1}\cdots s_n}\), a permutation of the set \(\{1, 2, \ldots , n\}\), generates correspondently a \(\left( \prod _{i=1}^{l} d_{s_i}\right) \times \left( \prod _{i=l+1}^n d_{s_i}\right) \) coefficient matrix where l is an arbitrary but fixed positive integer satisfying \(1\leqslant l\leqslant n\),
Appendix 2
This appendix is devoted to prove Theorem 3. In order to prove this theorem, we need the following lemma.
Lemma 1
Let \(S=\left\{ d_1, d_2,\ldots , d_n\right\} \) be a set of n positive numbers with \(d_i\geqslant 1 \ (i=1,2,\ldots n)\). Divide S into any \(k\ (1\leqslant k\leqslant n)\) subsets \(S_j=\left\{ d_1^j,d_2^j,\ldots , d_{n_j}^j\right\} \), where \(1\leqslant j\leqslant k\) and \(\sum _{j=1}^k n_j =n\). Then,
Proof
It is sufficient to verify that for any \(k\ (1\leqslant k\leqslant n-1)\) subsets \(S_j=\left\{ d_1^j,d_2^j,\ldots , d_{n_j}^j\right\} \) of the set S with \(1\leqslant j\leqslant k\) and \(\sum _{j=1}^k n_j =n\), there exists \(k+1\) subsets \(T_l=\left\{ c_1^l,c_2^l,\ldots ,c_{h_l}^l\right\} \) of the set S with \(1\leqslant l\leqslant k+1\) and \(\sum _{l=1}^{k+1} h_l =n\), such that
For k subsets \(S_j=\left\{ d_1^j,d_2^j,\ldots , d_{n_j}^j\right\} \) with \(1\leqslant j\leqslant k\) and \(\sum _{j=1}^k n_j =n\), without loss of generality we assume \(n_1 \geqslant 2\). Suppose that
with \(3\leqslant l\leqslant k+1\).
It is apparent from the condition that
A routine computation gives rise to
Rearranging the preceding inequality leads to
Thus we arrive at the conclusion that
This completes the proof of Lemma 1. \(\square \)
Now we turn to prove Theorem 3.
Proof of Theorem 3
It can be immediately seen that \({\mathcal {E}}^M(\left| \psi \right\rangle )\geqslant 0\) for any pure state \(\left| \psi \right\rangle \). It remains to show that the upper bound of \({\mathcal {E}}^M(\left| \psi \right\rangle )\) is \(({\widetilde{d}}-1)\sqrt{{{\widetilde{d}}}^n}\). For any \(n_i\)-partite component system \(A= {\mathcal {H}}^{d_1^i}\otimes {\mathcal {H}}^{d_2^i}\otimes \cdots \otimes {\mathcal {H}}^{d_{n_i}^i}\) (\(d_1^i, d_2^i,\ldots , d_{n_i}^i \in \{d_1, d_2,\ldots , d_n\}\)), let \(\rho _\mathrm{A}\) has the eigenvalues \(\lambda _1 , \lambda _2 , \ldots ,\lambda _{\varPi _{m=1}^{n_i} d_{m}^i} .\) Therefore,
and
Consequently, we infer that
Meanwhile, Lemma 1 tells us that
Hence,
which means that \({\mathcal {E}}^M\left( \left| \psi \right\rangle \right) \leqslant ({\widetilde{d}}-1)\sqrt{{{\widetilde{d}}}^n}\). Thus Theorem 3 is completed. \(\square \)
Rights and permissions
About this article
Cite this article
Li, Q., Cui, J., Wang, S. et al. Study of a monogamous entanglement measure for three-qubit quantum systems. Quantum Inf Process 15, 2405–2424 (2016). https://doi.org/10.1007/s11128-016-1285-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-016-1285-0