Skip to main content
Log in

Teleportation of a general two-photon state employing a polarization-entangled \(\chi \) state with nondemolition parity analyses

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Employing a polarization-entangled \(\chi \) state, which is a four-photon genuine entangled state, we propose a protocol teleporting a general two-photon polarization state. Firstly, the sender needs to perform one Controlled-NOT gate, one Hadamard gate, and one Controlled-NOT gate on the state to be teleported in succession. Secondly, the sender performs local nondemolition parity analyses based on cross-Kerr nonlinearities and publicizes the achieved outcomes. Finally, conditioned on the sender’s analysis outcomes, the receiver executes the single-photon unitary transformation operations on his own photons to obtain the state originally sit in the sender’s location. Due to the employment of nondemolition parity analyses rather than four-qubit joint measurement, it can be realized more feasible with currently available technologies. Moreover, the resources of Bell states can be achieved because the nondestructive measurement is exploited, which facilitates other potential tasks of quantum information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  2. Verstraete, F., Dehaene, J., De Moor, B., Verschelde, H.: Four qubits can be entangled in nine different ways. Phys. Rev. A 65, 052112 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  3. Lee, J., Min, H., Oh, S.D.: Multipartite entanglement for entanglement teleportation. Phys. Rev. A 66, 052318 (2002)

    Article  ADS  Google Scholar 

  4. Osterloh, A., Siewert, J.: Constructing N-qubit entanglement monotones from antilinear operators. Phys. Rev. A 72, 012337 (2005)

    Article  ADS  Google Scholar 

  5. Yeo, Y., Chua, W.K.: Teleportation and dense coding with genuine multipartite entanglement. Phys. Rev. Lett. 96, 060502 (2006)

    Article  ADS  Google Scholar 

  6. Wu, C., Yeo, Y., Kwek, L.C., Oh, C.H.: Quantum nonlocality of four-qubit entangled states. Phys. Rev. A 75, 032332 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  7. Bai, Y.-K., Yang, D., Wang, Z.: Multipartite quantum correlation and entanglement in four-qubit pure states. Phys. Rev. A 76, 022336 (2007)

    Article  ADS  Google Scholar 

  8. Bai, Y.-K., Wang, Z.D.: Multipartite entanglement in four-qubit cluster-class states. Phys. Rev. A 77, 032313 (2008)

    Article  ADS  Google Scholar 

  9. Bai, Y.-K., Ye, M.-Y., Wang, Z.D.: Entanglement monogamy and entanglement evolution in multipartite systems. Phys. Rev. A 80, 044301 (2009)

    Article  ADS  Google Scholar 

  10. Helwig, W., Cui, W., Latorre, J.I., Riera, A., Lo, H.-K.: Absolute maximal entanglement and quantum secret sharing. Phys. Rev. A 86, 52335 (2012)

    Article  ADS  Google Scholar 

  11. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Dong, L., Xiu, X.-M., Ren, Y.-P., Gao, Y.-J., Yi, X.X.: Teleportation of a two-qubit arbitrary unknown state using a four-qubit genuine entangled state with the combination of bell-state measurements. J. Exp. Theor. Phys. 116, 15 (2013a)

    Article  ADS  Google Scholar 

  13. Kok, P., Nemoto, K., Ralph, T.C., Dowling, J.P., Milburn, G.J.: Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135 (2007)

    Article  ADS  Google Scholar 

  14. Boileau, J.-C., Gottesman, D., Laflamme, R., Poulin, D., Spekkens, R.: Robust polarization-based quantum key distribution over a collective-noise channel. Phys. Rev. Lett. 92, 017901 (2004)

    Article  ADS  Google Scholar 

  15. Wang, X.-B.: Fault tolerant quantum key distribution protocol with collective random unitary noise. Phys. Rev. A 72, 050304(R) (2005a)

    Article  ADS  Google Scholar 

  16. Li, X.-H., Deng, F.-G., Zhou, H.-Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78, 022321 (2008)

    Article  ADS  Google Scholar 

  17. Sheng, Y.-B., Deng, F.-G.: Efficient quantum entanglement distribution over an arbitrary collective-noise channel. Phys. Rev. A 81, 042332 (2010a)

    Article  ADS  Google Scholar 

  18. Deng, F.-G., Li, X.-H., Zhou, H.-Y.: Passively self-error-rejecting qubit transmission over a collective-noise channel. Quantum Inf. Comput. 11, 913 (2011)

    MathSciNet  MATH  Google Scholar 

  19. Dong, L., Xiu, X.-M., Gao, Y.-J., Yi, X.X.: Controlled quantum key distribution with three-photon polarization-entangled states via the collective noise channel. J. Exp. Theor. Phys. 113, 583 (2011)

    Article  ADS  Google Scholar 

  20. Li, C.-Y., Li, Y.-S.: Fault-tolerate three-party quantum secret sharing over a collective-noise channel. Chin. Phys. Lett. 28, 020304 (2011)

    Article  ADS  Google Scholar 

  21. Yang, C.-W., Hwang, T.: Fault tolerant quantum key distributions using entanglement swapping of GHZ states over collective-noise channels. Quantum Inf. Process. 12, 3207 (2013a)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Dong, L., Xiu, X.-M., Shen, H.-Z., Gao, Y.-J., Yi, X.: Perfect distribution of four-photon \(\chi \)-type entangled states over an arbitrary collective noise channel by spatial degree of freedom. Opt. Commun. 308, 304 (2013b)

    Article  ADS  Google Scholar 

  23. Yang, C.-W., Hwang, T.: Quantum dialogue protocols immune to collective noise. Quantum Inf. Process. 12, 2131 (2013b)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Xiu, X.-M., Li, Q.-Y., Dong, L., Shen, H.-Z., Li, D., Gao, Y.-J., Yi, X.X.: Distributing a multi-photon polarization-entangled state with unitary fidelity via arbitrary collective noise channels. Quantum Inf. Process. 14, 361 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Wang, X.-W., Yang, G.-J.: Generation and discrimination of a type of four-partite entangled state. Phys. Rev. A 78, 024301 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  26. Wang, H.-F., Zhang, S.: Linear optical generation of multipartite entanglement with conventional photon detectors. Phys. Rev. A 79, 042336 (2009)

    Article  ADS  Google Scholar 

  27. Wang, X.-W.: Method for generating a new class of multipartite entangled state in cavity quantum electrodynamics. Opt. Commun. 282, 1052 (2009)

    Article  ADS  Google Scholar 

  28. Liu, G.-Y., Kuang, L.-M.: Production of genuine entangled states of four atomic qubits. J. Phys. B 42, 165505 (2009)

    Article  ADS  Google Scholar 

  29. Lin, X.: Scheme for generating a \(\chi \)-type four-atom entangled state in cavity QED. Chin. Phys. Lett. 27, 044207 (2010)

    Article  ADS  Google Scholar 

  30. Gao, G.-L., Song, F.-Q., Huang, S.-S., Wang, H., Yuan, X.-Z., Wang, M.-F., Jiang, N.-Q.: A simple scheme to generate \(\chi \)-type four-charge entangled states in circuit QED. Chin. Phys. B 21, 044209 (2012a)

    Article  ADS  Google Scholar 

  31. Gao, G.-L., Song, F.-Q., Huang, S.-S., Wang, Y.-W., Fan, Z.-Q., Yuan, X.-Z., Jiang, N.-Q.: Producing and distinguishing \(\chi \)-type four-qubit states in flux qubits. Chin. Phys. Lett. 29, 044214 (2012b)

    Article  ADS  Google Scholar 

  32. Dong, L., Xiu, X.-M., Gao, Y.-J., Yi, X.X.: A nearly deterministic scheme for generating \(\chi \)-type entangled states with weak cross-Kerr nonlinearities. Quantum Inf. Process. 12, 1787 (2013c)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Lin, S., Wen, Q.-Y., Gao, F., Zhu, F.-C.: Quantum secure direct communication with \(\chi \)-type entangled states. Phys. Rev. A 78, 064304 (2008)

    Article  ADS  Google Scholar 

  34. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Zha, X.W., Song, H.Y.: Non-Bell-pair quantum channel for teleporting an arbitrary two-qubit state. Phys. Lett. A 369, 377 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Cheung, C.-Y., Zhang, Z.-J.: Criterion for faithful teleportation with an arbitrary multiparticle channel. Phys. Rev. A 80, 022327 (2009)

    Article  ADS  Google Scholar 

  37. Zukowski, M., Zeilinger, A., Horne, M.A., Ekert, A.K.: Event-ready-detectors, Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287 (1993)

    Article  ADS  Google Scholar 

  38. Xiu, X.-M., Dong, H.-K., Dong, L., Gao, Y.-J., Chi, F.: Deterministic secure quantum communication using four-particle genuine entangled state and entanglement swapping. Opt. Commun. 282, 2457 (2009)

    Article  ADS  Google Scholar 

  39. Qin, S.-J., Wen, Q.-Y., Lin, S., Guo, F.-Z., Zhu, F.-C.: Cryptanalysis and improvement of a DSQC using four-particle entangled state and entanglement swapping. Opt. Commun. 282, 4017 (2009)

    Article  ADS  Google Scholar 

  40. Gao, G.: Quantum key distribution by swapping the entanglement of \(\chi \)-type state. Phys. Scr. 81, 065005 (2010)

    Article  ADS  MATH  Google Scholar 

  41. Gao, G., Wang, L.-P.: A protocol for bidirectional quantum secure communication based on genuine four-particle entangled states. Commun. Theor. Phys. 54, 447 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Qu, Z.-G., Chen, X.-B., Luo, M.-X., Niu, X.-X., Yang, Y.-X.: Quantum steganography with large payload based on entanglement swapping of \(\chi \)-type entangled states. Opt. Commun. 284, 2075 (2011)

    Article  ADS  Google Scholar 

  43. Wang, X.-W., Xia, L.-X., Wang, Z.-Y., Zhang, D.-Y.: Hierarchical quantum-information splitting. Opt. Commun. 283, 1196 (2010)

    Article  ADS  Google Scholar 

  44. Wang, X.-W., Zhang, D.-Y., Tang, S.-Q., Xie, L.-J.: Multiparty hierarchical quantum-information splitting. J. Phys. B 44, 035505 (2011a)

    Article  ADS  Google Scholar 

  45. Luo, M.-X., Deng, Y.: Quantum splitting an arbitrary three-qubit state with \(\chi \)-state. Quantum Inf. Process. 12, 773 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Deng, F.-G., Long, G.L., Liu, X.-S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  47. Yang, Y.-G., Cao, W.-F., Qiao-Yan, W.: Three-party quantum secret sharing of secure direct communication based on \(\chi \)-type entangled states. Chin. Phys. B 19, 050306 (2010)

    Article  ADS  Google Scholar 

  48. Dong, L., Xiu, X.-M., Ren, Y.-P., Liu, H.-W.: A deterministic secure quantum communication protocol using genuine four-particle entangled states with incomplete quantum teleportation. Acta Phys. Pol. B 41, 1203 (2010)

    Google Scholar 

  49. Wang, X.-B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005b)

    Article  ADS  Google Scholar 

  50. Xiu, X.-M., Dong, L., Gao, Y.-J.: Secure four-site distribution and quantum communication of \(\chi \)-type entangled states. Opt. Commun. 284, 2065 (2011)

    Article  ADS  Google Scholar 

  51. Liu, W., Wang, Y.-B., Jiang, Z.-T., Cao, Y.-Z.: A protocol for the quantum private comparison of equality with \(\chi \)-type state. Int. J. Theor. Phys. 51, 69 (2011)

    Article  MathSciNet  Google Scholar 

  52. Jia, H.-Y., Wen, Q.-Y., Li, Y.-B., Gao, F.: Quantum private comparison using genuine four-particle entangled states. Int. J. Theor. Phys. 51, 1187 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  53. Barrett, S.D., Kok, P., Nemoto, K., Beausoleil, R.G., Munro, W.J., Spiller, T.P.: Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities. Phys. Rev. A 71, 060302(R) (2005)

    Article  ADS  Google Scholar 

  54. He, B., Ren, Y., Bergou, J.: Creation of high-quality long-distance entanglement with flexible resources. Phys. Rev. A 79, 052323 (2009)

    Article  ADS  Google Scholar 

  55. He, B., Ren, Y.-H., Bergou, J.A.: Universal entangler with photon pairs in arbitrary states. J. Phys. B 43, 025502 (2010)

    Article  ADS  Google Scholar 

  56. Guo, Q., Bai, J., Cheng, L.-Y., Shao, X.-Q., Wang, H.-F., Zhang, S.: Simplified optical quantum-information processing via weak cross-Kerr nonlinearities. Phys. Rev. A 83, 054303 (2011)

    Article  ADS  Google Scholar 

  57. Wang, X.-W., Zhang, D.-Y., Tang, S.-Q., Xie, L.-J.: Nondestructive Greenberger–Horne–Zeilinger-state analyzer. Quantum Inf. Process. 12, 1065 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. Nemoto, K., Munro, W.J.: Nearly deterministic linear optical Controlled-NOT gate. Phys. Rev. Lett. 93, 250502 (2004)

    Article  ADS  Google Scholar 

  59. Lin, Q., Li, J.: Quantum control gates with weak cross-Kerr nonlinearity. Phys. Rev. A 79, 022301 (2009)

    Article  ADS  Google Scholar 

  60. Xiu, X.-M., Dong, L., Gao, Y.-J., Yi, X.X.: Nearly deterministic controlled-not gate with weak cross-kerr nonlinearities. Quantum Inf. Comput. 12, 0159 (2012a)

    MathSciNet  MATH  Google Scholar 

  61. Shapiro, J.: Single-photon Kerr nonlinearities do not help quantum computation. Phys. Rev. A 73, 062305 (2006)

    Article  ADS  Google Scholar 

  62. Shapiro, J.H., Razavi, M.: Continuous-time cross-phase modulation and quantum computation. New J. Phys. 9, 16 (2007)

    Article  ADS  Google Scholar 

  63. Kok, P., Lee, H., Dowling, J.: Single-photon quantum-nondemolition detectors constructed with linear optics and projective measurements. Phys. Rev. A 66, 063814 (2002)

    Article  ADS  Google Scholar 

  64. Kok, P.: Effects of self-phase-modulation on weak nonlinear optical quantum gates. Phys. Rev. A 77, 013808 (2008)

    Article  ADS  Google Scholar 

  65. Gea-Banacloche, J.: Impossibility of large phase shifts via the giant Kerr effect with single-photon wave packets. Phys. Rev. A 81, 043823 (2010)

    Article  ADS  Google Scholar 

  66. He, B., Lin, Q., Simon, C.: Cross-Kerr nonlinearity between continuous-mode coherent states and single photons. Phys. Rev. A 83, 053826 (2011)

    Article  ADS  Google Scholar 

  67. Feizpour, A., Xing, X., Steinberg, A.M.: Amplifying single-photon nonlinearity using weak measurements. Phys. Rev. Lett. 107, 133603 (2011)

    Article  ADS  Google Scholar 

  68. Lo, H.-Y., Chen, Y.-C., Su, P.-C., Chen, H.-C., Chen, J.-X., Chen, Y.-C., Yu, I.A., Chen, Y.-F.: Electromagnetically-induced-transparency-based cross-phase-modulation at attojoule levels. Phys. Rev. A 83, 041804(R) (2011)

    Article  ADS  Google Scholar 

  69. Siomau, M., Kamli, A.A., Moiseev, S.A., Sanders, B.C.: Entanglement creation with negative index metamaterials. Phys. Rev. A 85, 050303(R) (2012)

    Article  ADS  Google Scholar 

  70. Chen, Y.-H., Lee, M.-J., Hung, W., Chen, Y.-C., Chen, Y.-F., Yu, I.A.: Demonstration of the interaction between two stopped light pulses. Phys. Rev. Lett. 108, 173603 (2012)

    Article  ADS  Google Scholar 

  71. Xue, Z.-Y., Yang, L.-N., Zhou, J.: Circuit electromechanics with single photon strong coupling. Appl. Phys. Lett. 107, 023102 (2015)

    Article  ADS  Google Scholar 

  72. Munro, W.J., Nemoto, K., Spiller, T.P.: Weak nonlinearities: a new route to optical quantum computation. New J. Phys. 7, 137 (2005)

    Article  ADS  Google Scholar 

  73. Spiller, T.P., Nemoto, K., Braunstein, S.L., Munro, W.J., Loock, P.V., Milburn, G.J.: Quantum computation by communication. New J. Phys. 8, 30 (2006)

    Article  ADS  Google Scholar 

  74. Xia, Y., Song, J., Lu, P.-M., Song, H.-S.: Efficient implementation of the two-qubit controlled phase gate with cross-Kerr nonlinearity. J. Phys. B 44, 025503 (2011)

    Article  ADS  Google Scholar 

  75. Xiu, X.-M., Dong, L., Shen, H.-Z., Gao, Y.-J., Yi, X.X.: Construction scheme of a two-photon polarization controlled arbitrary phase gate mediated by weak cross-phase modulation. J. Opt. Soc. Am. B 30, 589 (2013a)

    Article  ADS  Google Scholar 

  76. Xiu, X.-M., Dong, L., Shen, H.-Z., Gao, Y.-J., Yi, X.X.: Preparing, linking, and unlinking cluster-type polarization-entangled states by integrating modules. Prog. Theor. Exp. Phys. 2013, 093A01 (2013)

    Article  Google Scholar 

  77. Louis, S.G.R., Nemoto, K., Munro, W.J., Spiller, T.P.: The efficiencies of generating cluster states with weak nonlinearities. New J. Phys. 9, 193 (2007a)

    Article  ADS  Google Scholar 

  78. Louis, S., Nemoto, K., Munro, W., Spiller, T.: Weak nonlinearities and cluster states. Phys. Rev. A 75, 042323 (2007b)

    Article  ADS  Google Scholar 

  79. An, N.B., Kim, K., Kim, J.: Generation of cluster-type entangled coherent states using weak nonlinearities and intense laser beams. Quantum Inf. Comput. 11, 0124 (2011)

    MathSciNet  MATH  Google Scholar 

  80. Sheng, Y.-B., Deng, F.-G., Zhou, H.-Y.: Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity. Phys. Rev. A 77, 042308 (2008)

    Article  ADS  Google Scholar 

  81. Li, X.-H.: Deterministic polarization-entanglement purification using spatial entanglement. Phys. Rev. A 82, 044304 (2010)

    Article  ADS  Google Scholar 

  82. Sheng, Y.-B., Deng, F.-G.: Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement. Phys. Rev. A 81, 032307 (2010b)

    Article  ADS  Google Scholar 

  83. Sheng, Y.-B., Deng, F.-G.: One-step deterministic polarization-entanglement purification using spatial entanglement. Phys. Rev. A 82, 044305 (2010c)

    Article  ADS  Google Scholar 

  84. Wang, C., Zhang, Y., Jin, G.-S.: Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities. Phys. Rev. A 84, 032307 (2011b)

    Article  ADS  Google Scholar 

  85. Deng, F.-G.: Efficient multipartite entanglement purification with the entanglement link from a subspace. Phys. Rev. A 84, 052312 (2011)

    Article  ADS  Google Scholar 

  86. Wang, C., Zhang, Y., Jin, G.-S.: Polarization-entanglement purification and concentration using cross-kerr nonlinearity. Quantum Inf. Comput. 11, 0988 (2011c)

    MathSciNet  MATH  Google Scholar 

  87. Xiong, W., Ye, L.: Schemes for entanglement concentration of two unknown partially entangled states with cross-Kerr nonlinearity. J. Opt. Soc. Am. B 28, 2030 (2011)

    Article  ADS  Google Scholar 

  88. Xiu, X.-M., Dong, L., Gao, Y.-J., Yi, X.X.: Quantum key distribution with Einstein–Podolsky–Rosen pairs associated with weak cross-Kerr nonlinearities. J. Opt. Soc. Am. B 29, 2869 (2012b)

    Article  ADS  Google Scholar 

  89. Xiu, X.-M., Dong, L., Shen, H.-Z., Gao, Y.-J., Yi, X.X.: Two-party quantum privacy comparison with polarization-entangled Bell states and the coherent states. Quantum Inf. Comput. 14, 0236 (2014)

    MathSciNet  Google Scholar 

  90. Dong, L., Wang, J.-X., Shen, H.-Z., Li, D., Xiu, X.-M., Gao, Y.-J., Yi, X.X.: Deterministic transmission of an arbitrary single-photon polarization state through bit-flip error channel. Quantum Inf. Process. 13, 1413 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  91. Zhou, J., Yang, M., Lu, Y., Cao, Z.-L., Yan, L., Cao, Z.-L.: Nearly deterministic teleportation of a photonic qubit with weak cross-Kerr nonlinearities. Chin. Phys. Lett. 26, 100301 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Grant Nos. 11544013, 11305016, 61301133, 11271055), the Program for Liaoning Excellent Talents in University of China (LNET Grant No. LJQ2014124).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Ming Xiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, L., Wang, JX., Li, QY. et al. Teleportation of a general two-photon state employing a polarization-entangled \(\chi \) state with nondemolition parity analyses. Quantum Inf Process 15, 2955–2970 (2016). https://doi.org/10.1007/s11128-016-1300-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1300-5

Keywords

Navigation