Skip to main content
Log in

Generation of GHZ states with invariant-based shortcuts

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A scheme is proposed to generate three-atom GHZ states by applying the inversely engineered control method on the basis of Lewis–Riesenfeld invariants. In the proposal, three atoms that have different configurations are trapped in a bimodal cavity. Numerical simulations indicate that our protocol has an obvious improvement of speed for the generation of GHZ states. Moreover, the present scheme is robust against both parameter fluctuations and dissipation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Greenberger, D.M., Horne, M.A., Zeilinger, A.: Going beyond Bell’s theorem. In: Kafatos, M. (ed.) Bell’s Theorem, Quantum Theory, and Conceptions of the Universe. Kluwer Academics, Dordrecht (1989)

    Google Scholar 

  2. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Zhang, Z.J., Man, Z.X.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72, 022303 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  4. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Gisin, N., Massar, S.: Optimal quantum cloning machines. Phys. Rev. Lett. 79, 2153 (1993)

    Article  ADS  Google Scholar 

  6. Schupper, N., Friedmann, H., Matusovsky, M., Rosenbluh, M., Wilson-Gordon, A.D.: Propagation of high-intensity short resonant pulses in inhomogeneously broadened media. J. Opt. Soc. Am. B. 16, 001127 (1999)

    Article  ADS  Google Scholar 

  7. Eilam, A., Wilson-Gordon, A.D., Friedmann, H.: Enhanced frequency conversion of nonadiabatic resonant pulses in coherently prepared \(\Lambda \) systems. Phys. Rev. A 73, 053805 (2006)

    Article  ADS  Google Scholar 

  8. Ackerhal, J.R.: Resonant pulse excitation leading to ionization. Phys. Rev. A 17, 293 (1978)

    Article  ADS  Google Scholar 

  9. Openov, L.A.: Resonant pulse operations on the buried donor charge qubits in semiconductors. Phys. Rev. B 70, 233313 (2004)

    Article  ADS  Google Scholar 

  10. Panek, P., Becker, A.: Dark pulses for resonant two-photon transitions. Phys. Rev. A 74, 023408 (2006)

    Article  ADS  Google Scholar 

  11. Vasilev, G.S., Kuhn, A., Vitanov, N.V.: Optimum pulse shapes for stimulated Raman adiabatic passage. Phys. Rev. A 80, 013417 (2009)

    Article  ADS  Google Scholar 

  12. Bergmann, K., Theuer, H., Shore, B.W.: Coherent population transfer among quantum states of atoms and molecules. Rev. Mod. Phys. 70, 1003 (1998)

    Article  ADS  Google Scholar 

  13. Yang, R.C., Lin, X., Ye, L.X., Chen, X., He, J., Liu, H.Y.: Generation of singlet states with Rydberg blockade mechanism and driven by adiabatic passage. Quantum Inf. Process. 15, 731 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Rangelov, A.A., Vitanov, N.V., Arimondo, E.: Stimulated Raman adiabatic passage into continuum. Phys. Rev. A 76, 043414 (2007)

    Article  ADS  Google Scholar 

  15. Kral, P., Thanopulos, I., Shapiro, M.: Coherently controlled adiabatic passage. Rev. Mod. Phys. 79, 53 (2007)

    Article  ADS  Google Scholar 

  16. Kuklinski, J.R., Gaubatz, U., Hioe, F.T., Bergmann, K.: Adiabatic population transfer in a three-level system driven by delayed laser pulses. Phys. Rev. A 40, 6741 (1989)

    Article  ADS  Google Scholar 

  17. Lu, M., Xia, Y., Song, J., Song, H.Shan: Driving three atoms into a singlet state in an optical cavity via adiabatic passage of a dark state. J. Phys. B At. Mol. Opt. Phys. 46, 015502 (2013)

    Article  ADS  Google Scholar 

  18. Vitanov, N.V., Suominen, K.A., Shore, B.W.: Creation of coherent atomic superpositions by fractional stimulated Raman adiabatic passage. J. Phys. B At. Mol. Opt. Phys. 32, 4535 (1999)

    Article  ADS  Google Scholar 

  19. Dridi, G., Guérin, S., Hakobyan, V., Jauslin, H.R., Eleuch, H.: Ultrafast stimulated Raman parallel adiabatic passage by shaped pulses. Phys. Rev. A 80, 043408 (2009)

    Article  ADS  Google Scholar 

  20. Eleuch, H., Guérin, S., Jauslin, H.R.: Effects of an environment on a cavity-quantum-electrodynamics system controlled by bichromatic adiabatic passage. Phys. Rev. A 85, 013830 (2012)

    Article  ADS  Google Scholar 

  21. Amniat-Talab, M., Guérin, S., Jauslin, H.R.: Generation of entanglement via adiabatic passage. Phys. Rev. A 72, 012339 (2005)

    Article  ADS  Google Scholar 

  22. Chen, X., Lizuain, I., Ruschhaupt, A., Guery-Odelin, D., Muga, J.G.: Shortcut to adiabatic passage in two- and three-Level atoms. Phys. Rev. Lett. 105, 123003 (2010)

    Article  ADS  Google Scholar 

  23. Chen, X., Muga, J.G.: Engineering of fast population transfer in three-level systems. Phys. Rev. A 86, 033405 (2012)

    Article  ADS  Google Scholar 

  24. Chen, X., Torrontegui, E., Muga, J.G.: Lewis–Riesenfeld invariants and transitionless quantum driving. Phys. Rev. A 83, 062116 (2011)

    Article  ADS  Google Scholar 

  25. Lewis Jr., H.R., Riesenfeld, W.B.: An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field. J. Math. Phys. 10, 1458 (1969)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Torrontegui, E., Martìnez-Garaot, S., Ruschhaupt, A., Muga, J.G.: Shortcuts to adiabaticity: fast-forward approach. Phys. Rev. A 86, 013601 (2012)

    Article  ADS  Google Scholar 

  27. Chen, Y.H., Xia, Y., Chen, Q.Q., Song, J.: Efficient shortcuts to adiabatic passage for fast population transfer in multiparticle systems. Phys. Rev. A 89, 033856 (2013)

    Article  ADS  Google Scholar 

  28. Chen, Y.H., Xia, Y., Chen, Q.Q., Song, J.: Fast and noise-resistant implementation of quantum phase gates and creation of quantum entangled states. Phys. Rev. A 91, 012325 (2015)

    Article  ADS  Google Scholar 

  29. Lu, X.J., Chen, X., Ruschhaupt, A., Alonso, D., Guerin, S., Muga, J.G.: Fast and robust population transfer in two-level quantum systems with dephasing noise and/or systematic frequency errors. Phys. Rev. A 88, 033406 (2013)

    Article  ADS  Google Scholar 

  30. Ruschhaupt, A., Chen, X., Alonso, D., Muga, J.G.: Optimally robust shortcuts to population inversion in two-level quantum systems. N. J. Phys. 14, 093040 (2012)

    Article  Google Scholar 

  31. Xiao, Y.F., Zou, X.B., Guo, G.C.: Generation of atomic entangled states with selective resonant interaction in cavity quantum electrodynamics. Phys. Rev. A 75, 012310 (2007)

    Article  ADS  Google Scholar 

  32. Zou, X.B., Xiao, Y.F., Guo, G.C.: Quantum phase gate through a dispersive atom–field interaction. Phys. Rev. A 75, 064301 (2007)

    Article  ADS  Google Scholar 

  33. Spillane, S.M., Kippenberg, T.J., Vahala, K.J., Goh, K.W., Wilcut, E., Kimble, H.J.: Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics. Phys. Rev. A 71, 013817 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61308012 and 61275215), the Natural Science Foundation of Fujian Province of China (Grant Nos. 2013J01008 and 2012J01004) and the Foundation of Fujian Educational Department (Grant Nos. JA14075, JB13021 and JB12014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rong-Can Yang or Hong-Yu Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, LX., Lin, X., Chen, X. et al. Generation of GHZ states with invariant-based shortcuts. Quantum Inf Process 15, 2785–2796 (2016). https://doi.org/10.1007/s11128-016-1303-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1303-2

Keywords

Navigation