Abstract
The construction of quantum MDS codes has been studied by many authors. We refer to the table in page 1482 of (IEEE Trans Inf Theory 61(3):1474–1484, 2015) for known constructions. However, there have been constructed only a few q-ary quantum MDS \([[n,n-2d+2,d]]_q\) codes with minimum distances \(d>\frac{q}{2}\) for sparse lengths \(n>q+1\). In the case \(n=\frac{q^2-1}{m}\) where \(m|q+1\) or \(m|q-1\) there are complete results. In the case \(n=\frac{q^2-1}{m}\) while \(m|q^2-1\) is neither a factor of \(q-1\) nor \(q+1\), no q-ary quantum MDS code with \(d> \frac{q}{2}\) has been constructed. In this paper we propose a direct approach to construct Hermitian self-orthogonal codes over \(\mathbf{F}_{q^2}\). Then we give some new q-ary quantum codes in this case. Moreover many new q-ary quantum MDS codes with lengths of the form \(\frac{w(q^2-1)}{u}\) and minimum distances \(d > \frac{q}{2}\) are presented.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Aly, S.A., Klappenecker, A., Sarvepalli, P.K.: On quantum and classical BCH codes. IEEE Trans. Inf. Theory 53(3), 1183–1188 (2007)
Ashikhmin, A., Knill, E.: Nonbinary quantum stabilizer codes. IEEE Trans. Inf. Theory 47(7), 3065–3072 (2001)
Chen, B., Ling, S., Zhang, G.: Application of constacyclic codes to quantum MDS codes. IEEE Trans. Inf. Theory 61(3), 1474–1484 (2015)
Feng, K.: Quantum code \([[6, 2, 3]]_ p\) and \([[7, 3, 3]]_p\) ( \(p \ge 3\)) exists. IEEE Trans. Inf. Theory 48(8), 2384–2391 (2002)
Grassl, M., Beth, T., Roetteler, M.: On optimal quantum codes. Int. J. Quantum Inf. 2(1), 757–766 (2004)
Grassl, M., Roetteler, M., Beth, T.: On quantum MDS codes. In: Proceedings of the International Symposium on Information Theory. Chicago, p. 356, (2004)
Grassl, M., Roetteler, M.: Quantum MDS codes over small fields. arXiv:1502.05267
La Guardia, G.G.: New quantum MDS codes. IEEE Trans. Inf. Theory 57(8), 5551–5554 (2011)
Jin, L., Ling, S., Luo, J., Xing, C.: Application of classical Hermitian self-orthogonal MDS codes to quantum MDS codes. IEEE Trans. Inf. Theory 56(9), 4735–4740 (2010)
Jin, L., Xing, C.: Euclidean and Hermitian self-orthogonal algebraic geometry codes and their application to quantum codes. IEEE Trans. Inf. Theory 58, 5484–5489 (2012)
Jin, L., Xing, C.: A construction of new quantum MDS codes. IEEE Trans. Inf. Theory 60(5), 2921–2925 (2014)
Kai, X., Zhu, S.: New quantum MDS codes from negacyclic codes. IEEE Trans. Inf. Theory 59(2), 1193–1197 (2013)
Kai, X., Zhu, S., Li, P.: Constacyclic codes and some new quantum MDS codes. IEEE Trans. Inf. Theory 60(4), 2080–2086 (2014)
Knill, E., Laflamme, R.: Theory of quantum error-correcting codes. Phys. Rev. A 55(2), 900–911 (1997)
Laflamme, R., Miquel, C., Paz, J.P., Zurek, W.H.: Perfect quantum error correcting code. Phys. Rev. Lett. 77(1), 198–201 (1996)
Li, Z., Xing, L.J., Wang, X.M.: Quantum generalized Reed–Solomon codes: unified framework for quantum MDS codes. Phys. Rev. A 77(1), 012308-1–12308-4 (2008)
Li, R., Xu, Z.: Construction of \([[n, n-4, 3]]q\) quantum MDS codes for odd prime power \(q\). Phys. Rev. A 82(5), 052316-1–052316-4 (2010)
MacWilliams, F.J., Sloane, N.J.A.: Theory of Error-Correcting Codes, 2nd edn. North Holland, Amsterdam (1978)
Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52(4), R2493–R2496 (1995)
Steane, A.M.: Enlargement of Calderbank–Shor–Steane quantum codes. IEEE Trans. Inf. Theory 45(7), 2492–2495 (1999)
Wang, L., Zhu, S.: New quantum MDS codes derived from constacyclic codes. Quantum Inf. Process. 14(3), 881–889 (2015). arXiv:1405.5421v1
Author information
Authors and Affiliations
Corresponding author
Additional information
X. He was supported by NSFC Grant 61202007; L. Xu and H. Chen were supported by NSFC Grants 11371138 and 11531002.
Rights and permissions
About this article
Cite this article
He, X., Xu, L. & Chen, H. New q-ary quantum MDS codes with distances bigger than \(\frac{q}{2}\) . Quantum Inf Process 15, 2745–2758 (2016). https://doi.org/10.1007/s11128-016-1311-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-016-1311-2