Abstract
Quantum correlations are almost impossible to address in bulk systems. Quantum measures extended only to a few number of parties can be discussed in practice. In the present work, we study nonlocality for a cluster of spins belonging to a mineral whose structure is that of a quantum magnet. We reproduce at a much smaller scale the experimental outcomes, and then, we study the role of quantum correlations there. A macroscopic entanglement witness has been introduced in order to reveal nonlocal quantum correlations between individual constituents of the azurite mineral at nonzero temperatures. The critical point beyond which entanglement is zero is found at \(T_c < 1\,\mathrm{K}\).






Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Kawamura, H., Li, M.S.: Equilibrium phase with broken time-reversal symmetry in ceramic high-Tc superconductors. Phys. Rev. Lett. 78, 1556 (1997)
Kawamura, H., Li, M.S.: Chiral glass: a new equilibrium phase of ceramic high-Tc superconductors. J. Phys. Soc. Jpn. 66, 2110 (1997)
Diep, H.T. (ed.): Magnetic Systems with Competing Interactions. World Scientific, Singapore (1994)
Oshikawa, M., Yamanaka, M., Affleck, I.: Magnetization Plateaus in spin chains: “Haldane Gap” for half-integer spins. Phys. Rev. Lett. 78, 1984 (1997)
Kikuchi, H., et al.: Experimental observation of the 1/3 magnetization Plateau in the diamond-chain compound \(\text{ Cu }_3 \big (\text{ CO }_3\big )_2\big (\text{ OH }\big )_2\). Phys. Rev. Lett. 94, 227201 (2005)
Jeschke, H., et al.: Multistep approach to microscopic models for frustrated quantum magnets: the case of the natural mineral azurite. Phys. Rev. Lett. 106, 217201 (2011)
Lo, H.-K., Popescu, S., Spiller, T.: Introduction to Quantum Computation and Information. World Scientific, River-Edge (1998)
Galindo, A., Martín-Delgado, M.A.: Information and computation: classical and quantum aspects. Rev. Mod. Phys. 74, 347 (2002)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Williams, C.P., Clearwater, S.H.: Explorations in Quantum Computing. Springer, New York (1997)
Williams, C.P.: Quantum Computing and Quantum Communications. Springer, Berlin (1998)
Ekert, A.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)
Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein Podolsky Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)
Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein Podolsky Rosen states. Phys. Rev. Lett. 69, 2881 (1993)
Ekert, A., Jozsa, R.: Quantum computation and Shor’s factoring algorithm. Rev. Mod. Phys. 68, 773 (1996)
Berman, G.P., Doolen, G.D., Mainieri, R., Tsifrinovich, V.I.: Introduction to Quantum Computers. World Scientific, Singapore (1998)
Batle, J., Casas, M.: Nonlocality and entanglement in the XY-model. Phys. Rev. A 82, 062101 (2010)
Batle, J., Casas, M.: Nonlocality and entanglement in qubit systems. J. Phys. A Math. Theor. 44, 445304 (2011)
Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880 (1969)
Collins, D., Gisin, N.: A relevant two qubit Bell inequality inequivalent to the CHSH inequality. J. Phys. A Math. Gen. 37, 1775 (2004)
Mermin, N.D.: Extreme quantum entanglement in a superposition of macroscopically distinct states. Phys. Rev. Lett. 65, 1838 (1990)
Ardehali, M.: Bell inequalities with a magnitude of violation that grows exponentially with the number of particles. Phys. Rev. A 46, 5375 (1992)
Belinskii, A.V., Klyshko, D.N.: Interference of light and Bell’s theorem. Phys. Usp. 36, 653 (1993)
Gisin, N., Bechmann-Pasquinucci, H.: Bell inequality, Bell states and maximally entangled states for n qubits. Phys. Lett. A 246, 1 (1998)
Scarani, V., Acín, A., Schenck, E., Aspelmeyer, M.: Nonlocality of cluster states of qubits. Phys. Rev. A 71, 042325 (2005)
Svetlichny, G.: Distinguishing three-body from two-body nonseparability by a Bell-type inequality. Phys. Rev. D. 35, 3066 (1987)
Collins, D., Gisin, N., Popescu, S., Roberts, D., Scarani, V.: Bell-type inequalities to detect true n-body nonseparability. Phys. Rev. Lett. 88, 170405 (2002)
Seevinck, M., Svetlichny, G.: Bell-type inequalities for partial separability in N-particle systems and quantum mechanical violations. Phys. Rev. Lett. 89, 060401 (2002)
Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671 (1983)
Vertesi, T., Bene, E.: Thermal entanglement in the nanotubular system Na\(_2\)V\(_3\)O\(_7\). Phys. Rev. B 73, 134404 (2006)
Saha-Dasgupta, T., Valentí, R., Capraro, F., Gros, C.: \(\text{ Na }_2\text{ V }_3\text{ O }_7\): a frustrated nanotubular system with spin-1/2 diamond ring geometry. Phys. Rev. Lett. 95, 107201 (2005)
Wiesniak, M., Vedral, V., Brukner, C.: Magnetic susceptibility as a macroscopic entanglement witness. New J. Phys. 7, 258 (2005)
Das, D., Singh, H., Chakraborty, T., Gopal, R.K., Mitra, C.: Experimental detection of quantum information sharing and its quantification in quantum spin systems. New J. Phys. 15, 013047 (2013)
Arnesen, M.C., Bose, S., Vedral, V.: Natural thermal and magnetic entanglement in the 1D Heisenberg model. Phys. Rev. Lett. 87, 017901 (2001)
Ananikian, N.S., Lazaryan, H., Nalbandyan, M.: Magnetic and quantum entanglement properties of the distorted diamond chain model for azurite. Eur. Phys. J. B 85, 223 (2012)
Ananikian, N.S., et al.: Magnetic properties and thermal entanglement on a triangulated Kagomé lattice. J. Phys. A Math. Theor. 44, 025001 (2011)
Acknowledgments
J. Batle acknowledges fruitful discussions with J. Rosselló, Maria del Mar Batle and Regina Batle. R. O. acknowledges support from High Impact Research MoE Grant UM.C/625/1/HIR/MoE/CHAN/04 from the Ministry of Education Malaysia.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Batle, J., Ooi, C.H.R., Abutalib, M. et al. Quantum information approach to the azurite mineral frustrated quantum magnet. Quantum Inf Process 15, 2839–2850 (2016). https://doi.org/10.1007/s11128-016-1317-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-016-1317-9