Skip to main content

Advertisement

Log in

Quantum information approach to the azurite mineral frustrated quantum magnet

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum correlations are almost impossible to address in bulk systems. Quantum measures extended only to a few number of parties can be discussed in practice. In the present work, we study nonlocality for a cluster of spins belonging to a mineral whose structure is that of a quantum magnet. We reproduce at a much smaller scale the experimental outcomes, and then, we study the role of quantum correlations there. A macroscopic entanglement witness has been introduced in order to reveal nonlocal quantum correlations between individual constituents of the azurite mineral at nonzero temperatures. The critical point beyond which entanglement is zero is found at \(T_c < 1\,\mathrm{K}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Kawamura, H., Li, M.S.: Equilibrium phase with broken time-reversal symmetry in ceramic high-Tc superconductors. Phys. Rev. Lett. 78, 1556 (1997)

    Article  ADS  Google Scholar 

  2. Kawamura, H., Li, M.S.: Chiral glass: a new equilibrium phase of ceramic high-Tc superconductors. J. Phys. Soc. Jpn. 66, 2110 (1997)

    Article  ADS  Google Scholar 

  3. Diep, H.T. (ed.): Magnetic Systems with Competing Interactions. World Scientific, Singapore (1994)

    Google Scholar 

  4. Oshikawa, M., Yamanaka, M., Affleck, I.: Magnetization Plateaus in spin chains: “Haldane Gap” for half-integer spins. Phys. Rev. Lett. 78, 1984 (1997)

    Article  ADS  Google Scholar 

  5. Kikuchi, H., et al.: Experimental observation of the 1/3 magnetization Plateau in the diamond-chain compound \(\text{ Cu }_3 \big (\text{ CO }_3\big )_2\big (\text{ OH }\big )_2\). Phys. Rev. Lett. 94, 227201 (2005)

    Article  ADS  Google Scholar 

  6. Jeschke, H., et al.: Multistep approach to microscopic models for frustrated quantum magnets: the case of the natural mineral azurite. Phys. Rev. Lett. 106, 217201 (2011)

    Article  ADS  Google Scholar 

  7. Lo, H.-K., Popescu, S., Spiller, T.: Introduction to Quantum Computation and Information. World Scientific, River-Edge (1998)

    Book  MATH  Google Scholar 

  8. Galindo, A., Martín-Delgado, M.A.: Information and computation: classical and quantum aspects. Rev. Mod. Phys. 74, 347 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  10. Williams, C.P., Clearwater, S.H.: Explorations in Quantum Computing. Springer, New York (1997)

    MATH  Google Scholar 

  11. Williams, C.P.: Quantum Computing and Quantum Communications. Springer, Berlin (1998)

    Google Scholar 

  12. Ekert, A.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein Podolsky Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein Podolsky Rosen states. Phys. Rev. Lett. 69, 2881 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Ekert, A., Jozsa, R.: Quantum computation and Shor’s factoring algorithm. Rev. Mod. Phys. 68, 773 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  16. Berman, G.P., Doolen, G.D., Mainieri, R., Tsifrinovich, V.I.: Introduction to Quantum Computers. World Scientific, Singapore (1998)

    Book  MATH  Google Scholar 

  17. Batle, J., Casas, M.: Nonlocality and entanglement in the XY-model. Phys. Rev. A 82, 062101 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  18. Batle, J., Casas, M.: Nonlocality and entanglement in qubit systems. J. Phys. A Math. Theor. 44, 445304 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880 (1969)

    Article  ADS  Google Scholar 

  20. Collins, D., Gisin, N.: A relevant two qubit Bell inequality inequivalent to the CHSH inequality. J. Phys. A Math. Gen. 37, 1775 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Mermin, N.D.: Extreme quantum entanglement in a superposition of macroscopically distinct states. Phys. Rev. Lett. 65, 1838 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Ardehali, M.: Bell inequalities with a magnitude of violation that grows exponentially with the number of particles. Phys. Rev. A 46, 5375 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  23. Belinskii, A.V., Klyshko, D.N.: Interference of light and Bell’s theorem. Phys. Usp. 36, 653 (1993)

    Article  ADS  Google Scholar 

  24. Gisin, N., Bechmann-Pasquinucci, H.: Bell inequality, Bell states and maximally entangled states for n qubits. Phys. Lett. A 246, 1 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Scarani, V., Acín, A., Schenck, E., Aspelmeyer, M.: Nonlocality of cluster states of qubits. Phys. Rev. A 71, 042325 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Svetlichny, G.: Distinguishing three-body from two-body nonseparability by a Bell-type inequality. Phys. Rev. D. 35, 3066 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  27. Collins, D., Gisin, N., Popescu, S., Roberts, D., Scarani, V.: Bell-type inequalities to detect true n-body nonseparability. Phys. Rev. Lett. 88, 170405 (2002)

    Article  ADS  Google Scholar 

  28. Seevinck, M., Svetlichny, G.: Bell-type inequalities for partial separability in N-particle systems and quantum mechanical violations. Phys. Rev. Lett. 89, 060401 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Vertesi, T., Bene, E.: Thermal entanglement in the nanotubular system Na\(_2\)V\(_3\)O\(_7\). Phys. Rev. B 73, 134404 (2006)

    Article  ADS  Google Scholar 

  31. Saha-Dasgupta, T., Valentí, R., Capraro, F., Gros, C.: \(\text{ Na }_2\text{ V }_3\text{ O }_7\): a frustrated nanotubular system with spin-1/2 diamond ring geometry. Phys. Rev. Lett. 95, 107201 (2005)

    Article  ADS  Google Scholar 

  32. Wiesniak, M., Vedral, V., Brukner, C.: Magnetic susceptibility as a macroscopic entanglement witness. New J. Phys. 7, 258 (2005)

    Article  ADS  Google Scholar 

  33. Das, D., Singh, H., Chakraborty, T., Gopal, R.K., Mitra, C.: Experimental detection of quantum information sharing and its quantification in quantum spin systems. New J. Phys. 15, 013047 (2013)

    Article  ADS  Google Scholar 

  34. Arnesen, M.C., Bose, S., Vedral, V.: Natural thermal and magnetic entanglement in the 1D Heisenberg model. Phys. Rev. Lett. 87, 017901 (2001)

    Article  ADS  Google Scholar 

  35. Ananikian, N.S., Lazaryan, H., Nalbandyan, M.: Magnetic and quantum entanglement properties of the distorted diamond chain model for azurite. Eur. Phys. J. B 85, 223 (2012)

    Article  ADS  Google Scholar 

  36. Ananikian, N.S., et al.: Magnetic properties and thermal entanglement on a triangulated Kagomé lattice. J. Phys. A Math. Theor. 44, 025001 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

J. Batle acknowledges fruitful discussions with J. Rosselló, Maria del Mar Batle and Regina Batle. R. O. acknowledges support from High Impact Research MoE Grant UM.C/625/1/HIR/MoE/CHAN/04 from the Ministry of Education Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Batle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batle, J., Ooi, C.H.R., Abutalib, M. et al. Quantum information approach to the azurite mineral frustrated quantum magnet. Quantum Inf Process 15, 2839–2850 (2016). https://doi.org/10.1007/s11128-016-1317-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1317-9

Keywords