Skip to main content
Log in

Secure quantum network coding for controlled repeater networks

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

To realize efficient quantum communication based on quantum repeater, we propose a secure quantum network coding scheme for controlled repeater networks, which adds a controller as a trusted party and is able to control the process of EPR-pair distribution. As the key operations of quantum repeater, local operations and quantum communication are designed to adopt quantum one-time pad to enhance the function of identity authentication instead of local operations and classical communication. Scheme analysis shows that the proposed scheme can defend against active attacks for quantum communication and realize long-distance quantum communication with minimal resource consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ahlswede, R., Cai, N., Li, S.: Network information flow. IEEE Trans. Inf. Theory 46(4), 1204–1216 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Hayashi, M., Iwama, K.: Quantum network coding. In: Proceedings of the 2007 Symposium on Theoretical Aspects of Computer Science, Lecture Notes in Computer Science, vol. 4393, pp. 610–621 (2007)

  3. Hayashi, M.: Prior entanglement between senders enables perfect quantum network coding with modification. Phys. Rev. A 76(4), 1–5 (2007)

    Article  MathSciNet  Google Scholar 

  4. Kobayashi, H., Gall, F.L., Nishimura, H., et al.: Perfect quantum network communication protocol based on classical network coding. In: Proceedings of the 2010 IEEE International Symposium on Information Theory(ISIT2010), Austin, TX, USA, pp. 2686–2690 (2010)

  5. Kobayashi, H., Gall, F.L., Nishimura, H., et al.: General scheme for perfect quantum network coding with free classical communication. Autom. Lang. Program. 5555, 622–633 (2009)

    MathSciNet  MATH  Google Scholar 

  6. Kobayashi, H., Gall, F.L., Nishimura, H. et al.: Constructing quantum network coding schemes from classical nonlinear protocols. In: Proceedings of the 2011 IEEE International Symposium on Information Theory(ISIT2011), pp. 109–113 (2011)

  7. Ma, S.Y., Chen, X.B.: Probabilistic quantum network coding of M-qudit states over the butterfly network. Opt. Commun. 283, 497–501 (2010)

    Article  ADS  Google Scholar 

  8. Leung, D., Oppenheim, J., Winter, A.: Quantum network communication—the butterfly and beyond. IEEE Trans. Inf. Theory 56, 3478–3490 (2010)

    Article  MathSciNet  Google Scholar 

  9. Shang, T., Zhao, X.J., Liu, J.W.: Quantum network coding based on controlled teleportation. IEEE Commun. Lett. 18(5), 865–868 (2014)

    Article  ADS  Google Scholar 

  10. Shang, T., Du, G., Liu, J.W.: Opportunistic quantum network coding based teleportation. Quantum Inf. Process. (2015). doi:10.1007/s11128-015-1219-2

  11. Dur, W., Briegel, H.-J., Cirac, J.I., Zoller, P.: Quantum repeaters based on entanglement purification. Phys. Rev. A 59(1), 169–181 (1999)

    Article  ADS  MATH  Google Scholar 

  12. Duan, L.M., Lukin, M.D., Cirac, J.I., et al.: Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001)

    Article  ADS  Google Scholar 

  13. Yan, Y., Pei, C.X., Han, B.B. et al.: A quantum repeater for quantum communication systems. In: Proceedings of the First Chinese Conference on Communications Departments of Colleges and Universities, pp. 791–796 (2007)

  14. Pei, C.X., Yan, Y., Liu, D., et al.: A quantum repeater communication system based on entanglement. Acta Photonica Sin. 37(12), 2422–2426 (2008)

    Google Scholar 

  15. Satoh, T., Le Gall, F., Imai, H.: Quantum network coding for quantum repeaters. Phys. Rev. A 86(3), 1–8 (2012)

    Article  Google Scholar 

  16. Wu, H., Wang, X.B., Pan, J.W.: Quantum communication: status and prospects. Sci. Sin. 44(3), 296–311 (2014)

    MathSciNet  Google Scholar 

  17. Boykin, P.O., Roychowdhury, V.: Optimal encryption of quantum bits. Phys. Rev. A 67, 042317 (2003)

    Article  ADS  Google Scholar 

  18. Iwama, K., Nishimura, H., Raymond, R., et al.: Quantum Network Coding for General Graphs, pp. 1–14 (2006). arXiv:quantph/0611039

Download references

Acknowledgments

This project was supported by the National Natural Science Foundation of China (Nos. 61571024, 61272501), the National Basic Research Program of China (No. 2012CB315905), the Research Promotion Grants-in-Aid for KUT Graduates of Special Scholarship Program and the Fundamental Research Funds for Central Universities (No. YWF15GJSYS059) for valuable helps.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Shang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, T., Li, J. & Liu, Jw. Secure quantum network coding for controlled repeater networks. Quantum Inf Process 15, 2937–2953 (2016). https://doi.org/10.1007/s11128-016-1323-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1323-y

Keywords

Navigation