Skip to main content
Log in

Protecting quantum entanglement and correlation by local filtering operations

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this work, the protection of different quantum entanglement and correlation is explored by local filtering operations. The results show that the filtering operations can indeed be useful for combating amplitude-damping decoherence and recovering the quantum entanglement and correlation. In this scheme, although the final states satisfy the quantum entanglement and correlation, the corresponding initial noisy states does not satisfy them, which means that the filtering operations can reveal the hidden genuine quantum entanglement and correlation of these initial noisy states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Fuchs, C.A., Gisin, N.R., Griffiths, B., Niu, C.S., Peres, A.: Phys. Rev. A 56, 1163 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  3. Vidal, G.: Phys. Rev. Lett. 91, 147902 (2003)

    Article  ADS  Google Scholar 

  4. Datta, A., Shaji, A., Caves, C.M.: Phys. Rev. Lett. 100, 050502 (2008)

    Article  ADS  Google Scholar 

  5. Lanyon, B.P., Barbieri, M., Almeida, M.P., White, A.G.: Phys. Rev. Lett. 101, 200501 (2008)

    Article  ADS  Google Scholar 

  6. Ollivier, H., Zurek, W.H.: Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  7. Henderson, L., Vedral, V.: J. Phys. A 34, 6899 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  8. Zurek, W.H.: Phys. Rev. A 67, 012320 (2003)

    Article  ADS  Google Scholar 

  9. Dillenschneider, R., Lutz, E.: Europhys. Lett. 88, 50003 (2009)

    Article  ADS  Google Scholar 

  10. Sarandy, M.S.: Phys. Rev. A 80, 022108 (2009)

    Article  ADS  Google Scholar 

  11. Wang, J.C., Deng, J.F., Jing, J.L.: Classical correlation and quantum discord sharing of Dirac fields in noninertial frames. Phys. Rev. A. 81, 052120 (2010)

    Article  ADS  Google Scholar 

  12. Barenco, A.: Quantum physics and computers. Contemp. Phys. 37, 375 (1996)

    Article  ADS  Google Scholar 

  13. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  16. Aolita, L., Chaves, R., Cavalcanti, D., Acin, A., Davidovich, L.: Scaling laws for the decay of multiqubit entanglement. Phys. Rev. Lett. 100, 080501 (2008)

    Article  ADS  Google Scholar 

  17. Borras, A., Majtey, A.P., Plastino, A.R., Casas, M., Plastino, A.: Robustness of highly entangled multiqubit states under decoherence. Phys. Rev. A 79, 022108 (2009)

    Article  ADS  Google Scholar 

  18. Aolita, L., Cavalcanti, D., Acin, A., Salles, A., Tiersch, M., Buchleitner, A., DeMelo, F.: Scalability of Greenberger-Horne-Zeilinger and random-state entanglement in the presence of decoherence. Phys. Rev. A 79, 032322 (2009)

    Article  ADS  Google Scholar 

  19. Ma, W.C., Xu, S., He, J., Shi, J., Ye, L.: Probing the entanglement distillability responses to the Unruh effect and prepared states. Quantum Inf. Process 14, 1411–1428 (2015)

    Article  ADS  MATH  Google Scholar 

  20. Yu, T., Eberly, J.H.: Quantum open system theory: bipartite aspects. Phys. Rev. Lett. 97, 140403 (2006)

    Article  ADS  Google Scholar 

  21. Kwiat, P.G., Barraza-Lopez, S., Stefanov, A., Gisin, N.: Experimental entanglement distillation and ‘hidden’ non-locality. Nature (London) 409, 1014 (2001)

    Article  ADS  Google Scholar 

  22. Murao, M., Plenio, M.B., Popescu, S., Vedral, V., Knight, P.L.: Multiparticle entanglement purification protocols. Phys. Rev. A 57, R4075 (1998)

    Article  ADS  Google Scholar 

  23. Miyake, A., Briegel, H.J.: Distillation of multipartite entanglement by complementary stabilizer measurements. Phys. Rev. Lett. 95, 220501 (2005)

    Article  ADS  Google Scholar 

  24. Siomau, M., Kamli, A.: Defeating entanglement sudden death by a single local filtering. Phys. Rev. A 86, 032304 (2012)

    Article  ADS  Google Scholar 

  25. Dür, W., Aschauer, H., Briegel, H.J.: Multiparticle entanglement purification for graph states. Phys. Rev. Lett. 91, 107903 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  26. Kruszynska, C., Miyake, A., Briegel, H.J., Dür, W.: Entanglement purification protocols for all graph states. Phys. Rev. A 74, 052316 (2006)

    Article  ADS  Google Scholar 

  27. Aschauer, H., Dür, W., Briegel, H.J.: Multiparticle entanglement purification for two-colorable graph states. Phys. Rev. A 71, 012319 (2005)

    Article  ADS  Google Scholar 

  28. Huber, M., Plesch, M.: Purification of genuine multipartite entanglement. Phys. Rev. A 83, 062321 (2011)

    Article  ADS  Google Scholar 

  29. Sun, Q., Al-Amri, M., Davidovich, L., Zubairy, M.S.: Reversing entanglement change by a weak measurement. Phys. Rev. A 82, 052323 (2010)

    Article  ADS  Google Scholar 

  30. Korotkov, A.N., Jordan, A.N.: Undoing a weak quantum measurement of a solid-state qubit. Phys. Rev. Lett. 97, 166805 (2006)

    Article  ADS  Google Scholar 

  31. Xu, S., He, J., Song, X., Shi, J., Ye, L.: Optimized decoherence suppression of two qubits in independent non-Markovian environments using weak measurement and quantum measurement reversal. Quantum Inf. Process. 14, 755–764 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Sun, Q., Al-Amri, M., Zubairy, M.S.: Reversing the weak measurement of an arbitrary field with finite photon number. Phys. Rev. A 80, 033838 (2009)

    Article  ADS  Google Scholar 

  33. David, L., Eduardo, M.M., Achim, K.: Perfect Zeno-like effect through imperfect measurements at a finite frequency. Phys. Rev. A 91, 022106 (2015)

    Article  Google Scholar 

  34. Moiseev, S.A., Skrebnev, V.A.: Short-cycle pulse sequence for dynamical decoupling of local fields and dipole–dipole interactions. Phys. Rev. A 91, 022329 (2015)

    Article  ADS  Google Scholar 

  35. Al-Amri, M., Scully, M.O., Zubairy, M.S.: Reversing the weak measurement on a qubit. J. Phys. B At. Mol. Opt. Phys. 44, 165509 (2011)

    Article  ADS  Google Scholar 

  36. Karmakar, S., Sen, A., Bhar, A., Sarkar, D.: Effect of local filtering on freezing phenomena of quantum correlation. Quantum Inf. Process. 14, 2517–2533 (2015)

    Article  ADS  MATH  Google Scholar 

  37. Yu, Y., Ye, L.: Protecting entanglement from amplitude damping in non-inertial frames by weak measurement and reversal. Quantum Inf. Process. 14, 321–335 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Gisin, N.: Hidden quantum nonlocality revealed by local filters. Phys. Lett. A 210, 151 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Wootters, W.K.: Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  40. Horodecki, R., Horodecki, P., Horodecki, M.: Phys. Lett. A 200, 340 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  41. Horodecki, R.: Phys. Lett. A 210, 223 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  42. Ghosh, S., Kar, G., De, A.S., Sen, U.: Phys. Rev. A 64, 044301 (2001)

    Article  ADS  Google Scholar 

  43. Jakob, M., Abranyos, Y., Bergou, J.A.: Phys. Rev. A 66, 022113 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  44. Jakóbczyk, L., Jamróz, A.: Phys. Lett. A 318, 318 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  45. Ma, W.C., Xu, S., Shi, J., Ye, L.: Quantum correlation versus Bell-inequality violation under the amplitude damping channel. Phys. Lett. A 379, 2802–2807 (2015)

    Article  ADS  Google Scholar 

  46. Ingarden, R.S., Kossakowski, A., Ohya, M.: Information Dynamics and Open System-Classical and Quantum Approach. Kluwer Academic, Dordrecht (1997)

    Book  MATH  Google Scholar 

  47. Cerf, N.J., Adami, C.: Negative entropy and information in quantum mechanics. Phys. Rev. Lett. 79, 5194 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China under Grant Nos. 61275119 and 11575001, and also by the Natural Science Research Project of Education Department of Anhui Province of China under Grant No. KJ2013A205.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, C., Ma, W. & Ye, L. Protecting quantum entanglement and correlation by local filtering operations. Quantum Inf Process 15, 3243–3256 (2016). https://doi.org/10.1007/s11128-016-1328-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1328-6

Keywords