Skip to main content
Log in

Application of generalized operator representation in the time evolution of quantum systems

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We have systematically explored the application of generalized operator representation including P-, W-, and Husimi representation in the time evolution of quantum systems. In particular, by using the method of differentiation within an ordered product of operators, we give the normally and antinormally ordered forms of the integral kernels of Husimi operator representations and its corresponding formulations. By making use of the generalized operator representation, we transform exponentially complex operator equations into tractable phase–space equations. As a simple application, the time evolution equation of Husimi function in the amplitude dissipative channel is clearly obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Glauber, R.J.: Coherent and incoherent states of the radiation field. Phys. Rev. 131(6), 2766–2788 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  2. Sudarshan, E.C.G.: Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 10(7), 277–279 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Walls, D.F., Milburn, G.J.: Quantum Optics. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  4. Wigner, E.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40(5), 749–759 (1932)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Husimi, K.: Some formal properties of the density matrix. Phys. Math. Soc. Jpn. (Nippon Sugaku-Buturigakkwai Kizi Dai 3 Ki) 22(4), 264–314 (1940)

    MATH  Google Scholar 

  6. Carmichael, H.J.: Statistical Methods in Quantum Optics I: Master Equations and Fokker-Planck Equations. Springer, Berlin (2002)

    Google Scholar 

  7. Gardiner, C.W.: Quantum Noise. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  8. http://en.wikipedia.org/wiki/Quasiprobability_distribution

  9. Wünsche, A.: About integration within ordered products in quantum optics. J. Opt. B: Quantum Semiclass. Opt. 1(3), R11–R21 (1999)

    Article  MathSciNet  Google Scholar 

  10. Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, London (1997)

    Book  MATH  Google Scholar 

  11. Hong-Yi, F., Zaidi, H.R., Klauder, J.R.: New approach for calculating the normally ordered form of squeeze operators. Phys. Rev. D 35(6), 1831–1834 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  12. Hong-Yi, F., Zaidi, H.R.: Squeezing and frequency jump of a harmonic oscillator. Phys. Rev. A 37(8), 2985–2988 (1988)

    Article  ADS  Google Scholar 

  13. Hong-Yi, F., VanderLinde, J.: Simple approach to the wave functions of one-and two-mode squeezed states. Phys. Rev. A 39(3), 1552–1555 (1989)

    Article  ADS  Google Scholar 

  14. Fan, H.Y., Yang, Y.L.: Weyl ordering, normally ordering of Husimi operator as the squeezed coherent state projector and its applications. Phys. Lett. A 353(6), 439–445 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Fan, H.Y., Zaidi, H.R.: Application of IWOP technique to the generalized Weyl correspondence. Phys. Lett. A 124(6), 303–307 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  16. Walls, D.F.: Squeezed states of light. Nature 306(5939), 141–146 (1983)

    Article  ADS  Google Scholar 

  17. Drummond, P.D., Gardiner, C.W.: Generalised P-representations in quantum optics. J. Phys. A: Math. Gen. 13(7), 2353–2368 (1980)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of the Colleges and Universities in Anhui Province under Grant: Nos. KJ2013A258 and KJ2013A261, Anhui Provincial Natural Science Foundation under Grant: No. 1408085MA20, and the Fund of the Education Department of Anhui Province of China under Grant: No. gxyqZD2016242.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui He.

Appendix

Appendix

\(\Delta (\alpha ,\alpha ^{*})\)’s antinormally ordered form

$$\begin{aligned} \Delta (\alpha ,\alpha ^{*})=\frac{-1}{\pi }\vdots \mathrm{e}^{2(\alpha ^{*}-a^{\dag })(\alpha -a)}\vdots . \end{aligned}$$
(45)

We can obtain through the procedure as follows:

Proof

$$\begin{aligned} \Delta (\alpha ,\alpha ^{*})=\frac{1}{\pi }:\mathrm{e}^{-2(\alpha ^{*}-a^{\dag })(\alpha -a)}:=\frac{\mathrm{e}^{-2|\alpha |^{2}}}{\pi }\mathrm{e}^{2\alpha a^{\dag }}:\mathrm{e}^{-2a^{\dag }a}:\mathrm{e}^{2\alpha ^{*}a}. \end{aligned}$$
(46)

Due to

$$\begin{aligned} \mathrm{e}^{\lambda a^{\dag }a}=:\mathrm{e}^{(\mathrm{e}^{\lambda }-1)a^{\dag }a}:, \end{aligned}$$
(47)

we have

$$\begin{aligned} (-)^{N}=:\mathrm{e}^{-2a^{\dag }a}:. \end{aligned}$$
(48)

Using

$$\begin{aligned} a^{\dag }(-)^{N}=-(-)^{N}a^{\dag };(-)^{N}a=-a(-)^{N}, \end{aligned}$$
(49)

we can obtain

$$\begin{aligned} \Delta (\alpha ,\alpha ^{*})=\frac{\mathrm{e}^{-2|\alpha |^{2}}}{\pi }(-)^{N}\mathrm{e}^{-2\alpha a^{\dag }}\mathrm{e}^{2\alpha ^{*}a}=\frac{\mathrm{e}^{2|\alpha |^{2}}}{\pi }\mathrm{e}^{2\alpha ^{*}a}(-)^{N}\mathrm{e}^{-2\alpha a^{\dag }}. \end{aligned}$$
(50)

Because

$$\begin{aligned} (-)^{N}=:\mathrm{e}^{-2a^{\dag }a}:=\underset{n=0}{\sum }\frac{(-2)^{n}}{n!}a^{\dag n}a^{n} \end{aligned}$$
(51)

and using the formulation

$$\begin{aligned} a^{\dag n}a^{n}=\vdots H_{n,n}(a,a^{\dag })\vdots , \end{aligned}$$
(52)

here, \(H_{m,n}(x,y)\) is Hermite polynomial, we can derive

$$\begin{aligned} (-)^{N}=\underset{n=0}{\sum }\frac{(-2)^{n}}{n!}\vdots H_{n,n}(a,a^{\dag })\vdots . \end{aligned}$$
(53)

Using

$$\begin{aligned} L_{n}(x\cdot y)=H_{n,n}(x,y)\frac{(-1)^{n}}{n!} \end{aligned}$$
(54)

and using

$$\begin{aligned} \frac{1}{1-z}\mathrm{e}^{\frac{xz}{z-1}}=\underset{n=0}{\sum }z^{n}L_{n}(x), \end{aligned}$$
(55)

where \(L_{n}\) is Laguerre polynomial, we can obtain

$$\begin{aligned} (-)^{N}=\underset{n=0}{\sum }2^{n}\vdots L_{n}(aa^{\dag })\vdots =-\vdots \mathrm{e}^{2a^{\dag }a}\vdots . \end{aligned}$$
(56)

From this, we have

$$\begin{aligned} \Delta (\alpha ,\alpha ^{*})=\frac{-1}{\pi }\vdots \mathrm{e}^{2(\alpha ^{*}-a^{\dag })(\alpha -a)}\vdots . \end{aligned}$$
(57)

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, R., Liu, X. & Song, J. Application of generalized operator representation in the time evolution of quantum systems. Quantum Inf Process 15, 4325–4336 (2016). https://doi.org/10.1007/s11128-016-1386-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1386-9

Keywords

Navigation