Skip to main content
Log in

Quantum computation for large-scale image classification

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Due to the lack of an effective quantum feature extraction method, there is currently no effective way to perform quantum image classification or recognition. In this paper, for the first time, a global quantum feature extraction method based on Schmidt decomposition is proposed. A revised quantum learning algorithm is also proposed that will classify images by computing the Hamming distance of these features. From the experimental results derived from the benchmark database Caltech 101, and an analysis of the algorithm, an effective approach to large-scale image classification is derived and proposed against the background of big data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yang, J., Yu, K., Gong, Y., Huang, T.: Linear spatial pyramid matching using sparse coding for image classification. In: IEEE Conference on Computer Vision and Pattern Recognition (2009)

  2. Zhou, X., Yu, K., Zhang, T., Huang, T.: Image classification using super-vector coding of local image descriptors. In: European Conference on Computer Vision (2010)

  3. Fu, Z., Sun, X., Liu, Q., Zhou, L., Shu, J.: Achieving efficient cloud search services: multikeyword ranked search over encrypted cloud data supporting parallel computing. IEICE Trans. Commun. E98–B(1), 190–200 (2015)

    Article  ADS  Google Scholar 

  4. Xia, Z., Wang, X., Sun, X., Wang, Q.: A secure and dynamic multi-keyword ranked search scheme over encrypted cloud data. IEEE Trans. Parallel Distrib. Syst. 27(2), 340–352 (2015)

    Article  MathSciNet  Google Scholar 

  5. Schuld, M., Sinayskiy, I., Petruccione, F.: Quantum computing for pattern classification. In: 13th Pacific Rim International Conference on Artificial Intelligence (PRICAI) and Also Appear in the Springer Lecture Notes in Computer Science 8862 (2014)

  6. http://www.vision.caltech.edu/Image_Datasets/Caltech101/

  7. Vlaso, A.Y.: Quantum Computations and Images Recognition. arXiv:quant-ph/9703010 (1997)

  8. Venegas-Andraca, S.E., Bose, S.: Storing, processing and retrieving an image using quantum mechanics. In: Proceedings of SPIE in Quantum Information and Computing (2003)

  9. Latorre, J.I.: Image Compression and Entanglement. arXiv:quant-ph/0510031 (2005)

  10. Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10(1), 63–84 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ruan, Y., Chen, H., Liu, Z., Tan, J.: Quantum image with high retrieval performance. Quantum Inf. Process. 15(2), 637–650 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Gael, S., Mădălin, G., Gerardo, A.: Quantum learning of coherent states. EPJ Quantum Technol. 2(1), 1–22 (2015)

    Article  Google Scholar 

  13. Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big feature and big data classification. Phys. Rev. Lett. 113(13), 130503 (2014)

    Article  ADS  Google Scholar 

  14. Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum principal component analysis. Nat. Phys. 10(9), 631–633 (2014)

    Article  Google Scholar 

  15. Cai, X., Wu, D., Su, Z., et al.: Entanglement-based machine learning on a quantum computer. Phys. Rev. Lett. 114(11), 110504 (2015)

    Article  ADS  Google Scholar 

  16. Aïmeur, E., Brassard, G., Gambs, S.: Quantum speed-up for unsupervised learning. Mach. Learn. 90(2), 261–287 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Barnett, S.M., Croke, S.: Quantum state discrimination. Adv. Opt. Photonics 1(2), 238–278 (2009)

    Article  Google Scholar 

  18. Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86 (1991)

    Article  Google Scholar 

  19. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  20. Yu, K., Zhang, T., Gong, Y.: Nonlinear learning using local coordinate coding. In: Advances in Neural Information Processing Systems (2009)

  21. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103(15), 150502 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  22. Quantum Tomography. http://en.wikipedia.org/wiki/Quantum_tomography

  23. Kaye, P.: Reversible Addition Circuit Using One Ancillary Bit with Application to Quantum Computing. arXiv:quant-ph/0408173v2 (2004)

  24. Li, H., Zhu, Q., Lan, S., et al.: Image storage, retrieval, compression and segmentation in a quantum system. Quantum Inf. Process. 12(6), 2269–2290 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Li, H., Zhu, Q., Li, X., et al.: Multidimensional color image storage, retrieval, and compression based on quantum amplitudes and phases. Inf. Sci. 273, 212–232 (2014)

    Article  Google Scholar 

  26. Zhang, Y., Lu, K., Gao, Y., et al.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(8), 2833–2860 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Yuan, S., Mao, X., Xue, Y., et al.: SQR: a simple quantum representation of infrared images. Quantum Inf. Process. 13(6), 1353–1379 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Schützhold, R.: Pattern recognition on a quantum computer. Phys. Rev. A. 67(6), 062311(1–6) (2003)

  29. Venegas-Andraca, S.E., Ball, J.L.: Processing images in entangled quantum systems. Quantum Inf. Process. 9(1), 1–11 (2010)

    Article  MathSciNet  Google Scholar 

  30. Caraiman, S., Manta, V.I.: Histogram-based segmentation of quantum images. Theor. Comput. Sci. 529, 4660 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhang, Y., Lu, K., Gao, Y., et al.: A novel quantum representation for log-polar images. Quantum Inf. Process. 12(8), 3103–3126 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61170321, 61502101), Natural Science Foundation of Jiangsu Province, China (Grant No. BK20140651), Natural Science Foundation of Anhui Province, China (Grant No. 1608085MF129), Research Fund for the Doctoral Program of Higher Education (Grant No. 20110092110024), Foundation for Natural Science Major Program of Education Bureau of Anhui Province (Grant No. KJ2015ZD09) and the open fund of Key Laboratory of Computer Network and Information Integration in Southeast University, Ministry of Education, China (Grant No. K93-9-2015-10C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanwu Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruan, Y., Chen, H., Tan, J. et al. Quantum computation for large-scale image classification. Quantum Inf Process 15, 4049–4069 (2016). https://doi.org/10.1007/s11128-016-1391-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1391-z

Keywords

Navigation