Skip to main content
Log in

Localization of two-particle quantum walk on glued-tree and its application in generating Bell states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Studies on two-particle quantum walks show that the spatial interaction between walkers will dynamically generate complex entanglement. However, those entanglement states are usually on a large state space and their evolutions are complex. It makes the entanglement states generated by quantum walk difficult to be applied directly in many applications of quantum information, such as quantum teleportation and quantum cryptography. In this paper, we firstly analyse a localization phenomena of two-particle quantum walk and then introduce how to use it to generate a Bell state. We will show that one special superposition component of the walkers’ state is localized on the root vertex if a certain interaction exists between walkers. This localization is interesting because it is contrary to our knowledge that quantum walk spreads faster than its classical counterpart. More interestingly, the localized component is a Bell state in the coin space of two walkers. By this method, we can obtain a Bell state easily from the quantum walk with spatial interaction by a local measurement, which is required in many applications. Through simulations, we verify that this method is able to generate the Bell state \(\frac{1}{\sqrt{2}}(|A \rangle _1|A\rangle _2 \pm |B\rangle _1|B\rangle _2)\) in the coin space of two walkers with fidelity greater than \(99.99999\,\%\) in theory, and we have at least a \(50\,\%\) probability to obtain the expected Bell state after a proper local measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48(2), 1687–1690 (1993)

    Article  ADS  Google Scholar 

  2. Portugal, Renato: Quantum Walks Search Algorithms. Springer, New York (2013)

    Book  MATH  Google Scholar 

  3. Ambainis, A.: Quantum walk algorithm for element distinctness. In: Foundations of Computer Science. Proceedings. 45th Annual IEEE Symposium on, pp. 22–31 (2004)

  4. Wang, H., Wu, J., Yang, X., Yi, X.: A graph isomorphism algorithm using signatures computed via quantum walk search model. J. Phys. A Math. Theor. 48(11) (2015)

  5. Junjie, W., Zhang, B., Tang, Y., Qiang, X., Wang, Huiquan: Finding symmetries of trees using continuous-time quantum walk. Chin. Phys. B 22(5), 50304 (2013)

    Article  Google Scholar 

  6. Ambainis, A., Bach, E., Nayak, A., Vishwanath, A., Watrous, J.: One-dimensional quantum walks. In: Proceedings of the 33rd Annual ACM Symposium on Theory of Computing, pp. 37–49 (2001)

  7. Lovett, N.B.: Application of Quantum Walks on Graph Structures to Quantum Computing. University of Leeds, Leeds (2011)

    Google Scholar 

  8. Zhang, R., YunQiu, X., Xue, P.: Disordered quantum walks in two-dimensional lattices. Chin. Phys. B 24(1), 10303 (2015)

    Article  ADS  Google Scholar 

  9. Li, D., Zhang, W., Kejia, Z.: One-dimensional lazy quantum walks and occupancy rate. Chin. Phys. B 05(5), 223–230 (2015)

    Google Scholar 

  10. Rohde, P.P., Schreiber, A., Stefanak, M., Jex, I., Gilchrist, A., Silberhorn, C.: Increasing the dimensionality of quantum walks using multiple walkers. J. Comput. Theor. Nanosci. 10(7), 1644–1652(9) (2013)

    Article  Google Scholar 

  11. Childs, A.M., Webb, Z.: Universal computation by multiparticle quantum walk. Science 339(6121), 791–794 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  12. Linda, S., Fabio, S., Giuseppe, V., Paolo, M., Andrea, C., Roberta, R., Roberto, O.: Two-particle bosonic-fermionic quantum walk via integrated photonics. Phys. Rev. Lett. 108(1), 140–144 (2012)

    Google Scholar 

  13. Rohde, P.P., Schreiber, A., Stefanak, M., Jex, I., Silberhorn, C.: Multi-walker discrete time quantum walks on arbitrary graphs, their properties and their photonic implementation. New J. Phys. 13(1), 1–15 (2011)

    Article  Google Scholar 

  14. Berry, S.D., Wang, J.B.: Two-particle quantum walks: entanglement and graph isomorphism testing. Phys. Rev. A 83(4), 786–792 (2011)

    Article  Google Scholar 

  15. Carson, G.R., Loke, T., Wang, J.B.: Entanglement dynamics of two-particle quantum walks. Quan. Inf. Process. 14(9), 3193–3210 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Allés, B., Gündüç, S., Gündüç, Y.: Maximal entanglement from quantum random walks. Quan. Inf. Process. 11(1), 211–227 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, D., Zhang, J., Guo, F.Z., Huang, W., Wen, Q.Y., Chen, H.: Discrete-time interacting quantum walks and quantum hash schemes. Quan. Inf. Process. 12(3), 1501–1513 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Ltkenhaus, N., Calsamiglia, J., Suominen, K.A.: On bell measurements for teleportation. Phys. Rev. A 59(5), 3295–3300 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  19. Albeverio, S., Fei, S.M., Yang, W.L.: Optimal teleportation based on bell measurement. Phys. Rev. A 66(1), 144 (2002)

    Article  MathSciNet  Google Scholar 

  20. Ekert, A.K.: Quantum cryptography based on bells theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Childs, A. M., Cleve, R., Deotto, E., Farhi, E., Gutmann, S., Spielman, D. A.: Exponential algorithmic speedup by quantum walk. In: Proceedings of the 35th ACM Annual Symposium Theory of Computing, pp. 59–68 (2002)

  22. Ambainis, A.: Quantum walks and their algorithmic applications. Int. J. Quan. Inf. 1(4), 507–518 (2004)

    Article  MATH  Google Scholar 

  23. Kempe, J.: Quantum random walks: an introductory overview. Contemp. Phys. 44(1), 417–418 (2009)

    Google Scholar 

  24. Li, Z.J., Wang, J.B.: An analytical study of quantum walk through glued-tree graphs. J. Phys. A Math. Theor. 48, 355301 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Konno, N.: Localization of an inhomogeneous discrete-time quantum walk on the line. Quan. Inf. Process. 9(3), 405–418 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Shikano, Y., Katsura, H.: Localization and fractality in inhomogeneous quantum walks with self-duality. Phys. Rev. E 82, 031122 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  27. Inui, N., Konno, N., Segawa, E.: One-dimensional three-state quantum walk. Phys. Rev. E 72(5), 168–191 (2005)

    Article  Google Scholar 

  28. Inui, N., Konno, N.: Localization of multi-state quantum walk in one dimension. Phys. A 353, 133–144 (2005). 2009

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NSFC) No. 61402506 and the Open Fund from HPCL No. 20150101.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjie Wu.

Appendix

Appendix

In Sect. 4, in order to obtain Eq. (15) we conclude that \(M(SC^I)^t|\varPhi \rangle = |\varPhi \rangle \) [Eq. (13)] and \(M(SC^I)^t|\varPsi \rangle = |\varPsi \rangle \langle \varPsi |(SC^I)^t|\varPsi \rangle \) (Eq. (14)) when t is an even number. Here we give the proof of these conclusions. Firstly, we prove a hypothesis that the measurement operator M in Eq. (12) can be expressed as:

$$\begin{aligned} M = |\varPhi \rangle \langle \varPhi |+|\varPhi ^-\rangle \langle \varPhi ^-|+|\varPsi \rangle \langle \varPsi |+|\varPsi ^-\rangle \langle \varPsi ^-| \end{aligned}$$
(19)

where \(|\varPhi \rangle \) and \(|\varPsi \rangle \) are defined in Eq. (9), and

$$\begin{aligned} \begin{array}{rl} |\varPhi ^-\rangle =&{}\frac{1}{\sqrt{2}}(|1,2\rangle _1|1,2\rangle _2-|1,3\rangle _1|1,3\rangle _2) \\ |\varPsi ^-\rangle =&{}\frac{1}{\sqrt{2}}(|1,2\rangle _1|1,3\rangle _2-|1,3\rangle _1|1,2\rangle _2) \end{array} \end{aligned}$$
(20)

This hypothesis can be proved as follows:

Proof

Form Eqs. (9) and (20), we can verify that:

$$\begin{aligned} \begin{array}{c} |\varPhi \rangle \langle \varPhi |+|\varPhi ^-\rangle \langle \varPhi ^-|= (|1,2\rangle _1|1,2\rangle _2)(_1\langle 1,2|_2\langle 1,2|)+(|1,3\rangle _1|1,3\rangle _2)(_1\langle 1,3|_2\langle 1,3|) \\ |\varPsi \rangle \langle \varPsi |+|\varPsi ^-\rangle \langle \varPsi ^-|= (|1,2\rangle _1|1,3\rangle _2)(_1\langle 1,2|_2\langle 1,3|)+(|1,3\rangle _1|1,2\rangle _2)(_1\langle 1,3|_2\langle 1,2|) \end{array} \end{aligned}$$
(21)

And we have the conclusion as follows:

$$\begin{aligned} \begin{array}{rl} M= &{} |1\rangle _{s_1}\langle 1|\otimes I_{c_1}\otimes |1\rangle _{s_2}\langle 1|\otimes I_{c_2} \\ = &{} |1\rangle _{s_1}\langle 1|\otimes \sum \nolimits _{i=1}^{N}{|i\rangle _{c_1}\langle i|}\otimes |1\rangle _{s_2}\langle 1|\otimes \sum \limits _{j=1}^{N}|j\rangle _{c_1}\langle j|\\ \end{array} \end{aligned}$$
(22)

Because the walkers only move along the edges of the graph, so the Hilbert space where the walkers evolve is actually

$$\begin{aligned} H' = \hbox {span}\left\{ |j,k\rangle _1|i,l\rangle _2: j,i=\{1,2,\ldots ,N\},(j,k)\in E\ \hbox {and}\ (i,l)\in E\right\} \end{aligned}$$
(23)

where E is the edges set of the graph. So, for the glued-tree, a measurement operator \(|1\rangle _{s_1}\langle 1|\otimes |i\rangle _{c_1}\langle i|\otimes |1\rangle _{s_2}\langle 1|\otimes |j\rangle _{c_1}\langle j|\) is meaningful only when \((1,i)\in E\) and \((1,j)\in E\). So the measurement operator in Eq. (22) on glued-tree can be expressed as:

$$\begin{aligned} M= & {} |1\rangle _{s_1}\langle 1|\otimes \sum \nolimits _{i=1}^{N}{|i\rangle _{c_1}\langle i|}\otimes |1\rangle _{s_2}\langle 1|\otimes \sum \nolimits _{j=1}^{N}|j\rangle _{c_1}\langle j|\nonumber \\= & {} |1\rangle _{s_1}\langle 1|\otimes \sum \nolimits _{i=2}^{3}{|i\rangle _{c_1}\langle i|}\otimes |1\rangle _{s_2}\langle 1|\otimes \sum \nolimits _{j=2}^{3}|j\rangle _{c_1}\langle j|\nonumber \\= & {} |1\rangle _{s_1}\langle 1|\otimes |2\rangle _{c_1}\langle 2|\otimes |1\rangle _{s_2}\langle 1|\otimes |2\rangle _{c_2}\langle 2|\nonumber \\&+|1\rangle _{s_1}\langle 1|\otimes |2\rangle _{c_1}\langle 2|\otimes |1\rangle _{s_2}\langle 1|\otimes |3\rangle _{c_2}\langle 3|\nonumber \\&+|1\rangle _{s_1}\langle 1|\otimes |3\rangle _{c_1}\langle 3|\otimes |1\rangle _{s_2}\langle 1|\otimes |2\rangle _{c_2}\langle 2|\nonumber \\&+|1\rangle _{s_1}\langle 1|\otimes |3\rangle _{c_1}\langle 3|\otimes |1\rangle _{s_2}\langle 1|\otimes |3\rangle _{c_2}\langle 3|\nonumber \\= & {} |\varPhi \rangle \langle \varPhi |+|\varPhi ^-\rangle \langle \varPhi ^-|+|\varPsi \rangle \langle \varPsi |+|\varPsi ^-\rangle \langle \varPsi ^-| \end{aligned}$$
(24)

\(\square \)

Then the conclusion that “\(M(SC^I)^t|\varPhi \rangle = |\varPhi \rangle \) when t is an even number” can be proved as follows:

Proof

From Eq. (11), we have \((SC^I)^t|\varPhi \rangle = |\varPhi \rangle \) when t is an even number. So

$$\begin{aligned} M(SC^I)^t|\varPhi \rangle= & {} \left( |\varPhi \rangle \langle \varPhi |+|\varPhi ^-\rangle \langle \varPhi ^-|+|\varPsi \rangle \langle \varPsi |+|\varPsi ^-\rangle \langle \varPsi ^-|\right) |\varPhi \rangle \nonumber \\= & {} |\varPhi \rangle \ \ \ \ \text{ when } \text{ t } \text{ is } \text{ an } \text{ even } \text{ number } \end{aligned}$$
(25)

\(\square \)

The conclusion that “\(M(SC^I)^t|\varPsi \rangle = |\varPsi \rangle \langle \varPsi |(SC^I)^t|\varPsi \rangle \)” can be proved as follows:

Proof

From Eq. (19) we have

$$\begin{aligned} M(SC^I)^t|\varPsi \rangle = \left( |\varPhi \rangle \langle \varPhi |+|\varPhi ^-\rangle \langle \varPhi ^-|+|\varPsi \rangle \langle \varPsi |+|\varPsi ^-\rangle \langle \varPsi ^-|\right) (SC^I)^t|\varPsi \rangle \end{aligned}$$
(26)
  • 1. From Eq. (11) we have:

    $$\begin{aligned} (SC^I)^t|\varPhi \rangle =|\varPhi \rangle \ \ \text{ when } \text{ t } \text{ is } \text{ an } \text{ even } \text{ number } \end{aligned}$$
    (27)

    So we can conclude that

    $$\begin{aligned} \langle \varPhi |(SC^I)^t|\varPsi \rangle = \langle \varPhi |(C^{I\dag }S^\dag )^t(SC^I)^t|\varPsi \rangle = \langle \varPhi |\varPsi \rangle = 0 \end{aligned}$$
    (28)

    when t is an even number

  • 2. In the same way, we can verify that:

    $$\begin{aligned} (SC^I)^t|\varPhi ^-\rangle =|\varPhi ^-\rangle \ \ \text{ when } \text{ t } \text{ is } \text{ an } \text{ even } \text{ number } \end{aligned}$$
    (29)

    So we can conclude that

    $$\begin{aligned} \langle \varPhi ^-|(SC^I)^t|\varPsi \rangle = \langle \varPhi ^-|(C^{I\dag }S^\dag )^t(SC^I)^t|\varPsi \rangle = \langle \varPhi ^-|\varPsi \rangle = 0 \end{aligned}$$
    (30)
  • 3. Because t is an even number, we suppose that \(t'=t/2\). Then we have:

    $$\begin{aligned} \begin{array}{rl} \langle \varPsi ^-|(SC^I)^t|\varPsi \rangle = &{} \langle \varPsi ^-|(SC^I)^{t'}(SC^I)^{t'}|\varPsi \rangle \\ = &{} \langle \varPsi ^-|(S^\dag C^{I\dag })^{t'}(SC^I)^{t'}|\varPsi \rangle \ \ \text{ For } C^{I\dag }=C^I \text{ and } S^{I\dag }=S^I\\ = &{} \langle \varPsi ^-|(C^{I\dag }S^\dag )^{t'}C^{I\dag }(SC^I)^{t'}|\varPsi \rangle \ \ \text{ For } C^I|\varPsi ^-\rangle = |\varPsi ^-\rangle \end{array} \end{aligned}$$
    (31)

We suppose \(\frac{1}{\sqrt{2}}|1,2\rangle _1|1,3\rangle _2=|a\rangle \) and \(\frac{1}{\sqrt{2}}|1,3\rangle _1|1,2\rangle _2=|b\rangle \). Then we have \(|\varPsi \rangle = |a\rangle +|b\rangle \) and \(|\varPsi ^-\rangle = |a\rangle -|b\rangle \).

$$\begin{aligned} \begin{array}{l} (SC^I)^{t'}|\varPsi \rangle = (SC^I)^{t'}|a\rangle +(SC^I)^{t'}|b\rangle =|a'\rangle +|b'\rangle \\ (SC^I)^{t'}|\varPsi ^-\rangle = (SC^I)^{t'}|a\rangle -(SC^I)^{t'}|b\rangle = |a'\rangle -|b'\rangle \end{array} \end{aligned}$$
(32)

where \(|a'\rangle = (SC^I)^{t'}|a\rangle \) and \(|b'\rangle = (SC^I)^{t'}|b\rangle \). From Eqs. (31) and (32), we have

$$\begin{aligned} \begin{array}{rl} \langle \varPsi ^-|(SC^I)^t|\varPsi \rangle = &{}(\langle a'|- \langle b'|)C^{I\dag }(|a'\rangle +|b'\rangle )\\ = &{} \langle a'|C^{I\dag }|a'\rangle + \langle a'|C^I|b'\rangle -\langle b'|C^{I\dag }|a'\rangle \\ &{} - \langle b'|C^{I\dag }|b'\rangle \ \ \text{ For } C^I=C^{I\dag } \\ = &{} \langle a'|C^{I\dag }|a'\rangle - \langle b'|C^{I\dag }|b'\rangle \ \ \ \ \text{ For } \langle a'|C^I|b'\rangle = \langle b'|C^{I\dag }|a'\rangle \end{array} \end{aligned}$$
(33)

Because of the symmetry of glued-tree (see Fig. 1), we can verify that \(\langle a'|C^{I\dag }|a'\rangle = \langle b'|C^{I\dag }|b'\rangle \). So we conclude that

$$\begin{aligned} \langle \varPsi ^-|(SC^I)^t|\varPsi \rangle =0 \end{aligned}$$
(34)

From Eq. (24), we have

$$\begin{aligned} \begin{array}{rl} M(SC^I)^t|\varPsi \rangle = &{} \left( |\varPhi \rangle \langle \varPhi |+|\varPhi ^-\rangle \langle \varPhi ^-|+|\varPsi \rangle \langle \varPsi |+|\varPsi ^-\rangle \langle \varPsi ^-|\right) (SC^I)^t|\varPsi \rangle \\ = &{} |\varPhi \rangle \langle \varPhi |(SC^I)^t|\varPsi \rangle +|\varPhi ^-\rangle \langle \varPhi ^-|(SC^I)^t|\varPsi \rangle \\ &{} +|\varPsi \rangle \langle \varPsi |(SC^I)^t|\varPsi \rangle +|\varPsi ^-\rangle \langle \varPsi ^-|(SC^I)^t|\varPsi \rangle \end{array} \end{aligned}$$
(35)

Then from Eq. (28), we have

$$\begin{aligned} |\varPhi \rangle \langle \varPhi |(SC^I)^t|\varPsi \rangle = 0\ \ \text{ when } \text{ t } \text{ is } \text{ an } \text{ even } \text{ number } \end{aligned}$$
(36)

From Eq. (30), we have

$$\begin{aligned} |\varPhi ^-\rangle \langle \varPhi ^-|(SC^I)^t|\varPsi \rangle = 0\ \ \text{ when } \text{ t } \text{ is } \text{ an } \text{ even } \text{ number } \end{aligned}$$
(37)

And from Eq. (34), we have

$$\begin{aligned} |\varPsi ^-\rangle \langle \varPsi ^-|(SC^I)^t|\varPsi \rangle = 0\ \ \text{ when } \text{ t } \text{ is } \text{ an } \text{ even } \text{ number } \end{aligned}$$
(38)

So finally, we can conclude that

$$\begin{aligned} \begin{array}{rl} M(SC^I)^t|\varPsi \rangle = &{} \left( |\varPhi \rangle \langle \varPhi |+|\varPhi ^-\rangle \langle \varPhi ^-|+|\varPsi \rangle \langle \varPsi |+|\varPsi ^-\rangle \langle \varPsi ^-|\right) (SC^I)^t|\varPsi \rangle \\ = &{} |\varPsi \rangle \langle \varPsi |(SC^I)^t|\varPsi \rangle \ \ \text{ when } \text{ t } \text{ is } \text{ an } \text{ even } \text{ number } \end{array} \end{aligned}$$
(39)

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Wu, J., He, H. et al. Localization of two-particle quantum walk on glued-tree and its application in generating Bell states. Quantum Inf Process 15, 3619–3635 (2016). https://doi.org/10.1007/s11128-016-1414-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1414-9

Keywords

Navigation