Abstract
We present a scheme for implementing discrete quantum Fourier transform (DQFT) with robustness against the decoherence effect using weak cross-Kerr nonlinearities (XKNLs). The multi-photon DQFT scheme can be achieved by operating the controlled path and merging path gates that are formed with weak XKNLs and linear optical devices. To enhance feasibility under the decoherence effect, in practice, we utilize a displacement operator and photon-number-resolving measurement in the optical gate using XKNLs. Consequently, when there is a strong amplitude of the coherent state, we demonstrate that it is possible to experimentally implement the DQFT scheme, utilizing current technology, with a certain probability of success under the decoherence effect.






Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings, 35th Annual Symposium on Foundations of Computer Science, vol. 124 (1994)
Grover, L.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325 (1997)
Kitaev, A.: Quantum measurements and the Abelian stabilizer problem. arXiv:quant-ph/9511026 (1995)
Simon, D.: On the power of quantum computation. In: Proceedings, 35th Annual Symposium on Foundations of Computer Science, vol. 116 (1994)
Jozsa, R.: Quantum algorithm and the Fourier transform. Proc. R. Soc. Lond.: Ser. A 454, 323 (1998)
Scully, M., Zubairy, M.: Cavity QED implementation of the discrete quantum Fourier transform. Phys. Rev. A 65, 052324 (2002)
Wang, H.F., Zhang, S., Yeon, K.H.: Implementing quantum discrete Fourier transform by using cavity quantum electrodynamics. J. korean Phys. Soc. 53, 1787 (2008)
Wang, H.F., Zhu, A.D., Zhang, S., Yeon, K.H.: Simple implementation of discrete quantum Fourier transform via cavity quantum electrodynamics. New J. Phys. 13, 013021 (2011)
Wang, H.F., Zhang, S., Zhu, A.D., Yeon, K.H.: Fast and effective implementation of discrete quantum Fourier transform via virtual-photon-induced process in separate cavities. J. Opt. Soc. Am. B 29, 1078 (2012)
Weinstein, Y., Pravia, M., Fortunato, E.: Implementation of the quantum Fourier transform. Phys. Rev. Lett. 86, 1889 (2001)
Zhang, J., Long, G., Deng, Z., Liu, W., Lu, Z.: Nuclear magnetic resonance implementation of a quantum clock synchronization algorithm. Phys. Rev. A 70, 062322 (2004)
Cirac, J., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091 (1995)
Gulde, S., Riebe, M., Lancaster, G.P.T., Becher, C., Eschner, J., Häffner, H., Schmidt-Kaler, F., Chuang, I.L., Blatt, R.: Implementation of the Deutsch–Jozsa algorithm on an ion-trap quantum computer. Nature 421, 48 (2003)
Fujiwara, S., Hasegawa, S.: General method for realizing the conditional phase-shift gate and a simulation of Grover’s algorithm in an ion-trap system. Phys. Rev. A 71, 012337 (2005)
Niskanen, A., Vartiainen, J., Salomaa, M.: Optimal multiqubit operations for josephson charge qubits. Phys. Rev. Lett. 90, 197901 (2003)
Howell, J., Yeazell, J.: Reducing the complexity of linear optics quantum circuits. Phys. Rev. A 61, 052303 (2000)
Bhattacharya, N., van Linden van den Heuvell, H., Spreeuw, R.: Implementation of quantum search algorithm using classical Fourier optics. Phys. Rev. Lett. 88, 137901 (2002)
Mohseni, M., Lundeen, J., Resch, K., Steinberg, A.: Experimental application of decoherence-free subspaces in an optical quantum-computing algorithm. Phys. Rev. Lett. 91, 187903 (2003)
Barak, R., Ben-aryeh, Y.: Quantum fast Fourier transform and quantum computation by linear optics. J. Opt. Soc. Am. B 24, 231 (2007)
Dong, L., Xiu, X.M., Shen, H.Z., Gao, Y.J., Yi, X.X.: Quantum Fourier transform of polarization photons mediated by weak cross-Kerr nonlinearity. J. Opt. Soc. Am. B 30, 2765 (2013)
Spiller, T.P., Nemoto, K., Braunstein, S.L., Munro, W.J., Loock, Pv, Milburn, G.J.: Quantum computation by communication. New J. Phys. 8, 30 (2006)
Loock, P.V., Munro, W.J., Nemoto, K., Spiller, T.P., Ladd, T.D., Braunstein, S.L., Milburn, G.J.: Hybrid quantum computation in quantum optics. Phys. Rev. A 78, 022303 (2008)
Lin, Q., He, B.: Addendum to “Single-photon logic gates using minimum resources”. Phys. Rev. A 82, 064303 (2010)
Nemoto, K., Munro, W.J.: Nearly deterministic linear optical controlled-NOT gate. Phys. Rev. Lett. 93, 250502 (2004)
Lin, Q., Li, J.: Quantum control gates with weak cross-Kerr nonlinearity. Phys. Rev. A 79, 022301 (2009)
Guo, Q., Bai, J., Cheng, L.Y., Shao, X.Q., Wang, H.F., Zhang, S.: Simplified optical quantum-information processing via weak cross-Kerr nonlinearities. Phys. Rev. A 83, 054303 (2011)
Zhao, R.T., Guo, Q., Cheng, L.Y., Sun, L.L., Wang, H.F., Zhang, S.: Two-qubit and three-qubit controlled gates with cross-Kerr nonlinearity. Chin. Phys. B 22, 030313 (2013)
Barrett, S.D., Kok, P., Nemoto, K., Beausoleil, R.G., Munro, W.J., Spiller, T.P.: Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities. Phys. Rev. A 71, 060302 (2005)
Heo, J., Hong, C.H., Lim, J.I., Yang, H.J.: Bidirectional quantum teleportation of unknown photons using path-polarization intra-particle hybrid entanglement and controlled-unitary gates via cross-Kerr nonlinearity. Chin. Phys. B 24, 050304 (2015)
Jin, G.S., Lin, Y., Wu, B.: Generating multiphoton Greenberger–Horne–Zeilinger states with weak cross-Kerr nonlinearity. Phys. Rev. A 75, 054302 (2007)
Zheng, C.H., Zhao, J., Shi, P., Li, W.D., Gu, Y.J.: Generation of three-photon polarization-entangled GHZ state via linear optics and weak cross-Kerr nonlinearity. Opt. Commun. 316, 26 (2014)
Heo, J., Hong, C.H., Lim, J.I., Yang, H.J.: Simultaneous quantum transmission and teleportation of unknown photons using intra- and inter-particle entanglement controlled-not gates via cross-Kerr nonlinearity and P-homodyne measurements. Int. J. Theor. Phys. 54, 2261 (2015)
He, B., Ren, Y., Bergou, J.A.: Creation of high-quality long-distance entanglement with flexible resources. Phys. Rev. A 79, 052323 (2009)
Lin, Q., He, B.: Single-photon logic gates using minimal resources. Phys. Rev. A 80, 042310 (2009)
Lin, Q., He, B., Bergou, J.A., Ren, Y.: Processing multiphoton states through operation on a single photon: methods and applications. Phys. Rev. A 80, 042311 (2009)
Lin, Q., He, B.: Highly efficient processing of multi-photon states. Sci. Rep. 5, 12792 (2015)
Zhu, M.Z., Ye, L.: Efficient distributed controlled Z gate without ancilla single-photons via cross-phase modulation. J. Opt. Soc. Am. B 31, 405 (2014)
Zhu, M.Z., Ye, L.: Efficient entanglement purification for Greenberger–Horne–Zeilinger states via the distributed parity-check detector. Opt. Commun. 334, 51 (2015)
Heo, J., Hong, C.H., Lee, D.H., Yang, H.J.: Bidirectional transfer of quantum information for unknown photons via cross-Kerr nonlinearity and photon-number-resolving measurement. Chin. Phys. B 25, 020306 (2016)
Louis, S.G.R., Nemoto, K., Munro, W.J., Spiller, T.P.: The efficiencies of generating cluster states with weak nonlinearities. New J. Phys. 9, 193 (2007)
Lin, Q., He, B.: Weaving independently generated photons into an arbitrary graph state. Phys. Rev. A 84, 062312 (2011)
Munro, W.J., Nemoto, K., Spiller, T.P.: Weak nonlinearities: a new route to optical quantum computation. New J. Phys. 7, 137 (2005)
Jeong, H.: Using weak nonlinearity under decoherence for macroscopic entanglement generation and quantum computation. Phys. Rev. A 72, 034305 (2005)
Jeong, H.: Quantum computation using weak nonlinearities: robustness against decoherence. Phys. Rev. A 73, 052320 (2006)
Barrett, S.D., Milburn, G.J.: Quantum-information processing via a lossy bus. Phys. Rev. A 74, 060302 (2006)
Wittmann, C., Andersen, U.L., Takeoka, M., Sych, D., Leuchs, G.: Discrimination of binary coherent states using a homodyne detector and a photon number resolving detector. Phys. Rev. A 81, 062338 (2010)
Loudon, R.: The Quantum Theory of Light. Oxford University Press, Oxford (2000)
Phoenix, S.J.D.: Wave-packet evolution in the damped oscillator. Phys. Rev. A 41, 5132 (1990)
Sanders, B.C., Milburn, G.J.: Complementarity in a quantum nondemolition measurement. Phys. Rev. A 39, 694 (1989)
Sanders, B.C., Milburn, G.J.: Quantum limits to all-optical phase shifts in a Kerr nonlinear medium. Phys. Rev. A 45, 1919 (1992)
Nagayama, K., Matsui, M., Kakui, M., Saitoh, T., Kawasaki, K., Takamizawa, H., Ooga, Y., Tsuchiya, I., Chigusa, Y.: Ultra low loss (0.1484 dB/km) pure silica core fiber. SEI Tech. Rev. 57, 3 (2004)
Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409, 46 (2001)
Knill, E.: Bounds on the probability of success of postselected nonlinear sign shifts implemented with linear optics. Phys. Rev. A 68, 064303 (2003)
Wang, H.F., Zhang, S., Yeon, K.H.: Linear optical implementation of discrete quantum fourier transform with conventional photon detectors. Int. J. Quantum Inf. 9, 509 (2011)
Kok, P.: Effects of self-phase-modulation on weak nonlinear optical quantum gates. Phys. Rev. A 77, 013808 (2008)
Acknowledgments
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. NRF-2015R1A2A2A03004152).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Heo, J., Kang, MS., Hong, CH. et al. Discrete quantum Fourier transform using weak cross-Kerr nonlinearity and displacement operator and photon-number-resolving measurement under the decoherence effect. Quantum Inf Process 15, 4955–4971 (2016). https://doi.org/10.1007/s11128-016-1439-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-016-1439-0