Skip to main content
Log in

Representing expectation values of projectors as series for evolution reconstruction

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose a Hamiltonian-independent approach for evolution reconstruction, which reconstructs the density operator of an evolving quantum system on the basis of recovering its time-varying expectation values of projectors. We represent band-limited expectation values of projectors as series, in which the coefficient of each term is a sum of an infinite set of measurement results. Both of the series for multiple measurement records and for a single record are given. We demonstrate using them to recover an expectation value and reconstruct the density operator of an evolving two-dimensional quantum system. The theoretical and simulative results prove that the two series are effective when performing a small number of measurements. Our approach is applicable to any quantum system of countable dimensions with arbitrary Hamiltonian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Smithey, D.T., Beck, M., Raymer, M.G., Faridani, A.: Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: application to squeezed states and the vacuum. Phys. Rev. Lett. 70, 1244–1247 (1993)

    Article  ADS  Google Scholar 

  2. Kühn, H., Welsch, D.-G., Vogel, W.: Reconstruction of the quantum state of multimode light. Phys. Rev. A 51, 4240–4249 (1995)

    Article  ADS  Google Scholar 

  3. Leonhardt, U., Schneider, S.: State reconstruction in one-dimensional quantum mechanics: the continuous spectrum. Phys. Rev. A 56, 2549–2556 (1997)

    Article  ADS  Google Scholar 

  4. Kim, M.S., Agarwal, G.S.: Reconstruction of an entangled state in cavity QED. Phys. Rev. A 59, 3044–3048 (1999)

    Article  ADS  Google Scholar 

  5. Deléglise, S., Dotsenko, I., Sayrin, C., Bernu, J., Brune, Michel, Raimond, Jean-Michel, Haroche, Serge: Reconstruction of non-classical cavity field states with snapshots of their decoherence. Nature 455, 07288 (2008)

    Article  Google Scholar 

  6. Khanna, F.C., Mello, P.A., Revzen, M.: Classical and quantum-mechanical state reconstruction. Eur. J. Phys. 33, 921–939 (2012)

    Article  MATH  Google Scholar 

  7. Kothe, C., Madsen, L.S., Andersen, U.L., Björk, G.: Experimental determination of the degree of polarization of quantum states. Phys. Rev. A 87, 043814 (2013)

    Article  ADS  Google Scholar 

  8. Banchi, L., Compagno, E., Bose, S.: Perfect wave-packet splitting and reconstruction in a one-dimensional lattice. Phys. Rev. A 91, 052323 (2015)

    Article  ADS  Google Scholar 

  9. Leonhardt, U., Paul, H., D’Ariano, G.M.: Tomographic reconstruction of the density matrix via pattern functions. Phys. Rev. A 52, 4899–4907 (1995)

    Article  ADS  Google Scholar 

  10. Steuernagel, O., Vaccaro, J.A.: Reconstructing the density operator via simple projectors. Phys. Rev. Lett. 75, 3201 (1995)

    Article  ADS  Google Scholar 

  11. Lougovski, P., Solano, E., Zhang, Z.M., Walther, H., Mack, H., Schleich, W.P.: Fresnel representation of the Wigner function: an operational approach. Phys. Rev. Lett. 91, 010401 (2003)

    Article  ADS  Google Scholar 

  12. Teo, Y.S., et al.: Quantum-state reconstruction by maximizing likelihood and entropy. Phys. Rev. Lett. 107, 020404 (2011)

    Article  ADS  Google Scholar 

  13. Fischbach, J., Freyberger, M.: Quantum optical reconstruction scheme using weak values. Phys. Rev. A 86, 052110 (2012)

    Article  ADS  Google Scholar 

  14. Michalik, L., Domanski, A.W.: Reconstruction of the probability density function by means of the degree of polarization for one-photon mixed states. Cent. Eur. J. Phys. 11, 512–517 (2013)

    Google Scholar 

  15. Tonolini, F., Chan, S., Agnew, M., Lindsay, A., Leach, Jonathan: Reconstructing high-dimensional two-photon entangled states via compressive sensing. Sci. Rep. 4, 06542 (2014)

    Article  ADS  Google Scholar 

  16. Holzäpfel, M., Baumgratz, T., Cramer, M., Plenio, M.B.: Scalable reconstruction of unitary processes and Hamiltonians. Phys. Rev. A 91, 042129 (2015)

    Article  ADS  Google Scholar 

  17. Gutzeit, R., Wallentowitz, S., Vogel, W.: Reconstructing the time evolution of a quantized oscillator. Phys. Rev. A 61, 062105 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  18. Tan, Y.-R.E., Paganin, D.M., Yu, R.P., Morgan, M.J.: Wave-function reconstruction of complex fields obeying nonlinear parabolic equations. Phys. Rev. E 68, 066602 (2003)

    Article  ADS  Google Scholar 

  19. Brune, M., Bernu, J., Guerlin, C., Deléglise, S., Sayrin, C.: Process tomography of field damping and measurement of Fock state lifetimes by quantum nondemolition photon counting in a cavity. Phys. Rev. Lett. 101, 240402 (2008)

    Article  ADS  Google Scholar 

  20. Coffey, T.M., Wyatt, R.E., Schieve, W.C.: Reconstruction of the time-dependent wave function exclusively from position data. Phys. Rev. Lett. 107, 230403 (2011)

    Article  Google Scholar 

  21. Sayrin, C., Dotsenko, I., Gleyzes, S., Brune, M., Raimond, J.M.: Optimal time-resolved photon number distribution reconstruction of a cavity field by maximum likelihood. New J. Phys. 14, 115007 (2012)

    Article  ADS  Google Scholar 

  22. Liu, Z., Cavaletto, S.M., et al.: Phase reconstruction of strong-field excited systems by transient-absorption spectroscopy. Phys. Rev. Lett. 115, 033003 (2015)

    Article  ADS  Google Scholar 

  23. Ralph, J.F., Jacobs, K., Hill, C.D.: Frequency tracking and parameter estimation for robust quantum state estimation. Phys. Rev. A 84, 052119 (2011)

    Article  ADS  Google Scholar 

  24. Řeháček, J., Hradil, Z., Ježek, M.: Iterative algorithm for reconstruction of entangled states. Phys. Rev. A 63, 040303 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lvovsky, A.I., Raymer, M.G.: Continuous-variable optical quantum-state tomography. Rev. Mod. Phys. 81, 299 (2009)

    Article  ADS  Google Scholar 

  26. Sayrin, C., et al.: Real-time quantum feedback prepares and stabilizes photon number states. Nature 477, 10376 (2011)

    Article  Google Scholar 

  27. Zhou, X., et al.: Field locked to a fock state by quantum feedback with single photon corrections. Phys. Rev. Lett. 108, 243602 (2012)

    Article  ADS  Google Scholar 

  28. Shen, Y., Gao, Y., Wei, Y.: Communication Fundamentals, 2nd edn. China Machine Press, Beijing (2008)

    Google Scholar 

  29. Cole, J.H., et al.: Identifying an experimental two-state Hamiltonian to arbitrary accuracy. Phys. Rev. A 71, 062312 (2005)

    Article  ADS  Google Scholar 

  30. Cole, J.H., et al.: Identifying a two-state Hamiltonian in the presence of decoherence. Phys. Rev. A 73, 062333 (2006)

    Article  ADS  Google Scholar 

  31. Ralph, J.F., Combes, J., Wiseman, H.M.: An interleaved sampling scheme for the characterization of single qubit dynamics. Quantum Inf Process 11, 1523–1531 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  32. Guerlin, C., et al.: Progressive field-state collapse and quantum non-demolition photon counting. Nature 448, 06057 (2007)

    Article  Google Scholar 

  33. Zheng, J., Ying, Q., Yang, W.: Signals and Systems, 3rd edn. Higher Education Press, Beijing (2011)

    Google Scholar 

  34. Yin, H., Han, Y.: Principle and Technology of Quantum Communication. Electronic Industry Press, Beijing (2013)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Mingxi Guo for clarifying discussions. This work was supported by the National Natural Science Foundation of China (Nos. 11404407 and 61371121) and the Natural Science Foundation of Jiangsu Province (No. BK20140072).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Wang, ., Zhu, Y. et al. Representing expectation values of projectors as series for evolution reconstruction. Quantum Inf Process 15, 5155–5165 (2016). https://doi.org/10.1007/s11128-016-1446-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1446-1

Keywords

Navigation