Skip to main content

Advertisement

Log in

Cost-efficient design of a quantum multiplier–accumulator unit

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

This paper proposes a cost-efficient quantum multiplier–accumulator unit. The paper also presents a fast multiplication algorithm and designs a novel quantum multiplier device based on the proposed algorithm with the optimum time complexity as multiplier is the major device of a multiplier–accumulator unit. We show that the proposed multiplication technique has time complexity \(O((3 {\hbox {log}}_{2}n)+1)\), whereas the best known existing technique has \(O(n{\hbox {log}}_{2} n)\), where n is the number of qubits. In addition, our design proposes three new quantum circuits: a circuit representing a quantum full-adder, a circuit known as quantum ANDing circuit, which performs the ANDing operation and a circuit presenting quantum accumulator. Moreover, the proposed quantum multiplier–accumulator unit is the first ever quantum multiplier–accumulator circuit in the literature till now, which has reduced garbage outputs and ancillary inputs to a great extent. The comparative study shows that the proposed quantum multiplier performs better than the existing multipliers in terms of depth, quantum gates, delays, area and power with the increasing number of qubits. Moreover, we design the proposed quantum multiplier–accumulator unit, which performs better than the existing ones in terms of hardware and delay complexities, e.g., the proposed (\(n\times n\))—qubit quantum multiplier–accumulator unit requires \(O(n^{2})\) hardware and \(O({\hbox {log}}_{2}n)\) delay complexities, whereas the best known existing quantum multiplier–accumulator unit requires \(O(n^{3})\) hardware and \(O((n-1)^{2} +1+n)\) delay complexities. In addition, the proposed design achieves an improvement of 13.04, 60.08 and 27.2% for \(4\times 4\), 7.87, 51.8 and 27.1% for \(8\times 8\), 4.24, 52.14 and 27% for \(16\times 16\), 2.19, 52.15 and 27.26% for \(32 \times 32\) and 0.78, 52.18 and 27.28% for \(128 \times 128\)-qubit multiplications over the best known existing approach in terms of number of quantum gates, ancillary inputs and garbage outputs, respectively. Moreover, on average, the proposed design gains an improvement of 5.62% in terms of area and power consumptions over the best known existing approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 (1995)

    Article  ADS  Google Scholar 

  2. Kitaev, A.Y.: Quantum computations: algorithms and error correction. Russ. Math. Surv. 52(6), 91191U124 (1997)

    Article  MathSciNet  Google Scholar 

  3. Cohen, D.: An introduction to hilbert spaces and quantum logic. Spriger, New York (1989)

    Book  MATH  Google Scholar 

  4. Schubert, M.: FarhanRana: analysis of terahertz surface emitting quantum-cascade lasers. IEEE J. Quantum Electron. 42(3), 257–265 (2006)

    Article  ADS  Google Scholar 

  5. Akbar, E.P.A., Haghparast, M., Navi, K.: Novel design of a fast reversible wallace sign multiplier circuit in nanotechnology. Microelectron. J. 42(8), 973–981 (2011)

    Article  Google Scholar 

  6. Li, D., Wang, R., Zhang, F., Deng, F., Baagyere, E.: Quantum information splitting of arbitrary two-qubit state by using four-qubit cluster state and Bell-state. Quantum Inf. Process. 14(3), 1103–1116 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Cai, X.-D., Wu, D., Su, Z.-E., Chen, M.-C., Wang, X.-L., Li, L., Liu, N.-L., Lu, C.-Y., Pan, J.-W.: Entanglement-based machine learning on a quantum computer. Phys. Rev. Lett. 114(11), 110504 (2015)

    Article  ADS  Google Scholar 

  8. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  9. Feynman, R.: Quantum mechanical computers. Found. Phys. 16(6), 507–531 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  10. Kotiyal, S., Thapliyal, H., Ranganathan, N.: Circuit for Reversible Quantum Multiplier Based on Binary Tree Optimizing Ancillary and Garbage Bits. VLSI Design and 2014 13th International Conference on Embedded Systems, pp. 545, 550.5-9 (2014)

  11. Baugh, C.R., Wooley, B.A.: A Two’s Complement Parallel Array Multiplication Algorithm. IEEE Transactions on Computers, Issue No.12 - December (1973 vol.22), pp: 1045-1047

  12. Wallace, C.S.: A Suggestion for a Fast Multiplier. IEEE Trans. Electron. Compute. EC-13, 14–17 (1964)

  13. Alvarez-Sanchez, J.J., Alvarez-Bravo, J.V., Nieto, L.M.: A quantum architecture for multiplying signed integers. Int. Symp. Quantum Theory Symmetries J. Phys. Conf. Ser. 128, 012013 (2008)

  14. Chen, S.-K., Liu, C.-W., Wu, T.-Y., Tsai, A.-C.: Design and implementation of high-speed and energy-efficient variable-latency speculating booth multiplier (VLSBM). Circ. Syst. I Regul. Pap. IEEE Trans. 60(10), 2631–2643 (2013)

  15. Draper, T.G., Samuel A.K., Eric M.R., Krysta M.S.: A logarithmic-depth quantum carry-look-ahead adder. arXiv preprint arXiv:quant-ph/0406142 (2004)

  16. Yao, A.C.-C.: Quantum Circuit Complexity, pp. 352–361. Foundations of Computer Science (1993)

  17. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  18. RadhikaRamya, P., SudhaVani, Y.: Optimization and implementation of reversible BCD adder in terms of number of lines. Int. J. Reconfigurable Embed. Syst. (IJRES) 2(1), 2126 (2013)

    Google Scholar 

  19. Wille, R., Soeken, M., Drechsler, R.: Reducing the number of lines in reversible circuits. In: DAC ’10 Proceedings of the 47th Design Automation Conference, pp. 647–652 (2010)

  20. Elguibaly, F.: A fast parallel multiplier-accumulator using the modified Booth algorithm. IEEE Trans. Circ. Syst.-II Analog Digit. Signal Process. 47(9), 902–908 (2000)

    Article  Google Scholar 

  21. Seo, Y.-H., Kim, D.-W.: A new VLSI architecture of parallel multiplier- accumulator based on radix-2 modified Booth algorithm. IEEE Trans. Very Large Scale Integr. Syst. 18(2), 201–208 (2010)

    Article  ADS  Google Scholar 

  22. Prabhu, A.S., Elakya, V.: Design of modified low power booth multiplier. Computing, Communication and Applications (ICCCA), 2012 Int’l Conference on, pp. 1–6 (2012)

  23. Mogensen, T.A.E.: Garbage-Free Reversible Constant Multipliers for Arbitrary Integers.Reversible Computation, 5th International Conference, RC 2013, Victoria, BC, Canada, Proceedings, pp. 70–83 (2013)

  24. Hung, W.N., Song, X., Yang, G., Yang, J., Perkowski, M.: Optimal synthesis of multiple output Boolean functions using a set of quantum gates by symbolic reachability analysis. Comput.-Aided Des. Integr. Circ. Syst. IEEE Trans. 25(9), 1652–1663 (2006)

    Article  Google Scholar 

  25. Chakrabarti, A., Sur-Kolay, S.: Designing quantum adder circuits and evaluating their error performance. International Conference on Electronic Design (ICED 2008), pp. 1–6 (2008)

  26. Balandin, Alexander A., Wang, Kang L.: Implementation of quantum controlled-NOT gates using asymmetric semiconductor quantum dots. Quantum Comput. Quantum Commun.- QCQC 460–467 (1998)

  27. Dalacu, D., Mnaymneh, K., Xiaohua, W., Lapointe, J., Aers, G.C., Poole, P.J., Williams, R.L.: Selective-area vapor–liquid–solid growth of tunable InAsP quantum dots in nanowires. Appl. Phys. Lett. 98, 251101 (2011)

    Article  ADS  Google Scholar 

  28. Viamontes, G.F., Markov, I.L., Hayes, J.P.: QuIDDPro: High-performance quantum circuit simulation. http://vlsicad.eecs.umich.edu/Quantum/qp/ (2005)

  29. Mohammadi, M., Eshghi, M.: On figures of merit in reversible and quantum logic Designs. Quantum Inf. Process. 8(4), 297–318 (2009)

  30. Deustch, D.: Quantum computational networks. In: Proceedings of the Royal Society of London, series A, Mathematical and Physical Sciences, vol. 425, issue 1868, pp. 73–90 (1989)

  31. Kaye, P., Laflamme, R., Mosca, M.: An Introduction to Quantum Computing. Oxford University Press, eBook-LinG, ISBN 0-19-857000-7 (2007)

  32. Maynard, C.M., Pius, E.: A quantum multiply-accumulator. Quantum Inf. Process. 13(5), 1127–1138 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. QCL - A Programming Language for Quantum Computers, Quantum Computing Library Online. http://tph.tuwien.ac.at/oemer/qcl.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafiz Md. Hasan Babu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babu, H.M.H. Cost-efficient design of a quantum multiplier–accumulator unit. Quantum Inf Process 16, 30 (2017). https://doi.org/10.1007/s11128-016-1455-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-016-1455-0

Keywords