Abstract
We propose quantum information processing schemes based on cavity quantum electrodynamics (QED) for quantum communication. First, to generate entangled states (Bell and Greenberger–Horne–Zeilinger [GHZ] states) between flying photons and three-level atoms inside optical cavities, we utilize a controlled phase flip (CPF) gate that can be implemented via cavity QED). Subsequently, we present an entanglement swapping scheme that can be realized using single-qubit measurements and CPF gates via optical cavities. These schemes can be directly applied to construct an entanglement channel for a communication system between two users. Consequently, it is possible for the trust center, having quantum nodes, to accomplish the linked channel (entanglement channel) between the two separate long-distance users via the distribution of Bell states and entanglement swapping. Furthermore, in our schemes, the main physical component is the CPF gate between the photons and the three-level atoms in cavity QED, which is feasible in practice. Thus, our schemes can be experimentally realized with current technology.





Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers. Syst. Signal Process. 175 (1984)
Hong, C.H., Heo, J., Khym, G.L., Lim, J.I., Hong, S.K., Yang, H.J.: N quantum channels are sufficient for multi-user quantum key distribution protocol between n users. Opt. Commun. 283, 2644 (2010)
Sun, Z., Huang, J., Wang, P.: Efficient multiparty quantum key agreement protocol based on commutative encryption. Quantum Inf. Process. 15, 2101 (2016)
Bostrom, K., Felbinger, F.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)
Liu, Z., Chen, H., Liu, W., Xu, J., Wang, D., Li, Z.: Quantum secure direct communication with optimal quantum superdense coding by using general four-qubit states. Quantum Inf. Process. 12, 587 (2013)
Heo, J., Hong, C.H., Lee, D.H., Yang, H.J.: Bidirectional transfer of quantum information for unknown photons via cross-Kerr nonlinearity and photon-number-resolving measurement. Chin. Phys. B 25, 020306 (2016)
Tan, X., Zhang, X.: Controlled quantum secure direct communication by entanglement distillation or generalized measurement. Quantum Inf. Process. 15, 2137 (2016)
Zeng, G.H., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65, 042312 (2002)
Gao, F., Qin, S.J., Guo, F.Z., Wen, Q.Y.: Cryptanalysis of the arbitrated quantum signature protocols. Phys. Rev. A 84, 022344 (2011)
Kang, M.S., Hong, C.H., Heo, J., Lim, J.I., Yang, H.J.: Quantum signature scheme using a single qubit rotation operator. Int. J. Theor. Phys. 54, 614 (2015)
Heo, J., Hong, C.H., Lim, J.I., Yang, H.J.: Bidirectional quantum teleportation of unknown photons using path-polarization intra-particle hybrid entanglement and controlled-unitary gates via cross-Kerr nonlinearity. Chin. Phys. B 24, 050304 (2015)
Messamah, J., Schroeck Jr., F.E., Hachemane, M., Smida, A., Hamici, A.H.: Quantum mechanics on phase space and teleportation. Quantum Inf. Process. 14, 1035 (2015)
Heo, J., Kang, M.S., Hong, C.H., Yang, H., Choi, S.G.: Discrete quantum Fourier transform using weak cross-Kerr nonlinearity and displacement operator and photon-number-resolving measurement under the decoherence effect. Quantum Inf. Process. 15, 4955 (2016)
Briegel, H.J., Dur, W., Cirac, J.I., Zoller, P.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932 (1998)
Halder, M., Beveratos, A., Gisin, N., Scarani, V., Simon, C., Zbinden, H.: Entangling independent photons by time measurement. Nature (London) 3, 692 (2007)
Zukowski, M., Zeilinger, A., Horne, M.A., Ekert, A.K.: “Event-ready-detectors” Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287 (1993)
Lukin, M.D., Yelin, S.F., Fleischhauer, M.: Entanglement of atomic ensembles by trapping correlated photon states. Phys. Rev. Lett. 84, 4232 (2000)
Zhao, B., Chen, Z.B., Chen, Y.A., Schmiedmayer, J., Pan, J.W.: Robust creation of entanglement between remote memory qubits. Phys. Rev. Lett. 98, 240502 (2007)
Chen, Z.B., Zhao, B., Chen, Y.A., Schmiedmayer, J., Pan, J.W.: Fault-tolerant quantum repeater with atomic ensembles and linear optics. Phys. Rev. A 76, 022329 (2007)
Sangouard, N., Simon, C., Zhao, B., Chen, Y.A., Riedmatten, H.D., Pan, J.W., Gisin, N.: Robust and efficient quantum repeaters with atomic ensembles and linear optics. Phys. Rev. A 77, 062301 (2008)
Mirza, I.M., van Enk, S.J., Kimble, H.J.: Single-photon time-dependent spectra in coupled cavity arrays. J. Opt. Soc. Am. B 30, 2640 (2013)
Loock, P.V., Ladd, T.D., Sanaka, K., Yamaguchi, F., Nemoto, K., Munro, W.J., Yamamoto, Y.: Hybrid quantum repeater using bright coherent light. Phys. Rev. Lett. 96, 240501 (2006)
Munro, W.J., Meter, R.V., Sebastien, G.R.L., Nemoto, K.: High-bandwidth hybrid quantum repeater. Phys. Rev. Lett. 101, 040502 (2008)
Childress, L., Taylor, J.M., Sørensen, A.S., Lukin, M.D.: Fault-tolerant quantum repeaters with minimal physical resources and implementations based on single-photon emitters. Phys. Rev. A 72, 052330 (2005)
Childress, L., Taylor, J.M., Sørensen, A.S., Lukin, M.D.: Fault-tolerant quantum communication based on solid-state photon emitters. Phys. Rev. Lett. 96, 070504 (2006)
Nemoto, K., Trupke, M., Devitt, S.J., Stephens, A.M., Scharfenberger, B., Buczak, K., Nobauer, T., Everitt, M.S., Schmiedmayer, J., Munro, W.J.: Photonic architecture for scalable quantum information processing in diamond. Phys. Rev. X 4, 031022 (2014)
Waks, E., Vuckovic, J.: Dipole induced transparency in drop-filter cavity-waveguide systems. Phys. Rev. Lett. 96, 153601 (2006)
Simon, C., Niquet, Y.M., Caillet, X., Eymery, J., Poizat, J.P., Gerard, J.M.: Quantum communication with quantum dot spins. Phys. Rev. B 75, 081302(R) (2007)
Gao, W.B., Fallahi, P., Togan, E., Miguel-Sanchez, J., Imamoglu, A.: Observation of entanglement between a quantum dot spin and a single photon. Nature (London) 491, 426 (2012)
Greve, K.D., Yu, L., McMahon, P.L., Pelc, J.S., Natarajan, C.M., Kim, N.Y., Abe, E., Maier, S., Schneider, C., Kamp, M., Hofling, S., Hadfield, R.H., Forchel, A., Fejer, M.M., Yamamoto, Y.: Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength. Nature (London) 491, 421 (2012)
Schaibley, J.R., Burgers, A.P., McCracken, G.A., Duan, L.M., Berman, P.R., Steel, D.G., Bracker, A.S., Gammon, D., Sham, L.J.: Demonstration of quantum entanglement between a single electron spin confined to an InAs quantum dot and a photon. Phys. Rev. Lett. 110, 167401 (2013)
Li, T., Yang, G.J., Deng, F.G.: Heralded quantum repeater for a quantum communication network based on quantum dots embedded in optical microcavities. Phys. Rev. A 93, 012302 (2016)
Sangouard, N., Dubessy, R., Simon, C.: Quantum repeaters based on single trapped ions. Phys. Rev. A 79, 042340 (2009)
Duan, L.M., Lukin, M.D., Cirac, J.I., Zoller, P.: Long-distance quantum communication with atomic ensembles and linear optics. Nature (London) 414, 413 (2001)
Chou, C.W., Laurat, J., Deng, H., Choi, K.S., Riedmatten, H.D., Felinto, D., Kimble, H.J.: Functional quantum nodes for entanglement distribution over scalable quantum networks. Science 316, 1316 (2007)
Chen, S., Chen, Y.A., Zhao, B., Yuan, Z.S., Schmiedmayer, J., Pan, J.W.: Demonstration of a stable atom-photon entanglement source for quantum repeaters. Phys. Rev. Lett. 99, 180505 (2007)
Yin, Z.Q., Zhao, Y.B., Yang, Y., Zou, C.L., Han, Z.F., Guo, G.C.: A scheme of quantum repeaters with single atom and cavity-QED. Opt. Commun. 283, 617 (2010)
Han, Y., He, B., Heshami, K., Li, C.Z., Simon, C.: Quantum repeaters based on Rydberg-blockade-coupled atomic ensembles. Phys. Rev. A 81, 052311 (2010)
Sangouard, N., Simon, C., Riedmatten, H.D., Gisin, N.: Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33 (2011)
Li, T., Deng, F.G.: Heralded high-efficiency quantum repeater with atomic ensembles assisted by faithful single-photon transmission. Sci. Rep. 5, 15610 (2015)
Duan, L.M., Kimble, H.J.: Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004)
Lin, X.M., Zhou, Z.W., Ye, M.Y., Xiao, Y.F., Guo, G.C.: One-step implementation of a multiqubit controlled-phase-flip gate. Phys. Rev. A 73, 012323 (2006)
Xiao, Y.F., Lin, X.M., Gao, J., Yang, Y., Han, Z.F., Guo, G.C.: Realizing quantum controlled phase flip through cavity QED. Phys. Rev. A 70, 042314 (2004)
Duan, L.M., Wang, B., Kimble, H.J.: Robust quantum gates on neutral atoms with cavity-assisted photon scattering. Phys. Rev. A 72, 032333 (2005)
Deng, Z.J., Zhang, X.L., Wei, H., Gao, K.L., Feng, M.: Implementation of a nonlocal N-qubit conditional phase gate by single-photon interference. Phys. Rev. A 76, 044305 (2007)
Mirza, I.M.: Controlling tripartite entanglement among optical cavities by reservoir engineering. J. Mod. Opt. 62, 1048 (2015)
Deng, Z.J., Feng, M., Gao, K.L.: Preparation of entangled states of four remote atomic qubits in decoherence-free subspace. Phys. Rev. A 75, 024302 (2007)
Song, J., Xia, Y., Song, H.S.: Quantum nodes for W-state generation in noisy channels. Phys. Rev. A 78, 024302 (2008)
Mirza, I.M.: Bi- and uni-photon entanglement in two-way cascaded fiber-coupled atom-cavity systems. Phys. Lett. A 379, 1643 (2015)
Yang, C.P., Su, Q.P., Han, S.: Generation of Greenberger-Horne-Zeilinger entangled states of photons in multiple cavities via a superconducting qutrit or an atom through resonant interaction. Phys. Rev. A 86, 022329 (2012)
Xia, Y., Kang, Y.H., Lu, P.M.: Complete polarized photons Bell-states and Greenberger-Horne-Zeilinger-states analysis assisted by atoms. J. Opt. Soc. Am. B 31, 2077 (2014)
Zhang, J.L., Su, S.L., Zhang, S., Zhu, A.D., Wang, H.F.: Complete and nondestructive polarization-entangled cluster state analysis assisted by a cavity input-output process. J. Opt. Soc. Am. B 33, 342 (2016)
Xiong, W., Ye, L.: Optimal real state quantum cloning machine in cavity quantum electrodynamics. J. Opt. Soc. Am. B 28, 2260 (2011)
Fang, B.L., Wu, T., Ye, L.: Realization of a general quantum cloning machine via cavity-assisted interaction. Europhys. Lett. 97, 60002 (2012)
Cirac, J.I., Zoller, P., Kimble, H.J., Mabuchi, H.: Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221 (1997)
Zhou, X.F., Zhang, Y.S., Guo, G.C.: Nonlocal gate of quantum network via cavity quantum electrodynamics. Phys. Rev. A 71, 064302 (2005)
Mirza, I.M., van Enk, S.J.: How nonlinear optical effects degrade Hong-Ou-Mandel like interference. Opt. Commun. 343, 172 (2015)
Maunz, P., Puppe, T., Schuster, I., Syassen, N., Pinkse, P.W.H., Rempe, G.: Normal-mode spectroscopy of a single-bound-atom-cavity system. Phys. Rev. Lett. 94, 033002 (2005)
Boozer, A.D., Boca, A., Miller, R., Northup, T.E., Kimble, H.J.: Cooling to the ground state of axial motion for one atom strongly coupled to an optical cavity. Phys. Rev. Lett. 97, 083602 (2006)
Mey, F., Yu, Y.F., Feng, X.L., Zhu, S.L., Zhang, Z.M.: Optical quantum computation with cavities in the intermediate coupling region. Europhys. Lett. 91, 10001 (2010)
Gehr, R., Volz, J., Dubois, G., Steinmetz, T., Colombe, Y., Lev, B.L., Long, R., Estève, J., Reichel, J.: Cavity-based single atom preparation and high-fidelity hyperfine state readout. Phys. Rev. Lett. 104, 203602 (2010)
Hunger, D., Steinmetz, T., Colombe, Y., Deutsch, C., Haensch, T.W., Reichel, J.: A fiber Fabry-Perot cavity with high finesse. New J. Phys. 12, 065038 (2010)
Li, T., Yang, G.J., Deng, F.G.: Entanglement distillation for quantum communication network with atomic-ensemble memories. Opt. Express 22, 23897 (2014)
Englund, D., Faraon, A., Fushman, I., Stoltz, N., Petroff, P., Vučković, J.: Controlling cavity reflectivity with a single quantum dot. Nature (London) 450, 857 (2007)
Fushman, I., Englund, D., Faraon, A., Stoltz, N., Petroff, P.: Controlled phase shifts with a single quantum dot. Science 320, 769 (2008)
Acknowledgements
This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (No. NRF-2015R1A2A2A03004152).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Heo, J., Kang, MS., Hong, CH. et al. Schemes generating entangled states and entanglement swapping between photons and three-level atoms inside optical cavities for quantum communication. Quantum Inf Process 16, 24 (2017). https://doi.org/10.1007/s11128-016-1459-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-016-1459-9