Skip to main content
Log in

New quantum dialogue protocol based on continuous-variable two-mode squeezed vacuum states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A new quantum dialogue protocol is designed by using the continuous-variable two-mode squeezed vacuum states due to its entanglement property. The two communication parties encode their own secret information into the entangled optical modes with the translation operations. Each communication party could deduce the secret information of their counterparts with the help of his or her secret information and the Bell-basis measurement results. The security of the proposed quantum dialogue protocol is guaranteed by the correlation between two-mode squeezed vacuum states and the decoy states performed with translation operations in randomly selected time slots. Compared with the discrete variable quantum dialogue protocols, the proposed continuous-variable quantum dialogue protocol is easy to realize with perfect utilization of quantum bits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 423171 (2003)

    Google Scholar 

  2. Radchenko, I.V., et al.: Relativistic quantum cryptography. Laser Phys. Lett. 11, 065203 (2014)

    Article  ADS  Google Scholar 

  3. Qi, B., Siopsis, G.: Loss-tolerant position-based quantum cryptography. Phys. Rev. A 91, 042337 (2015)

    Article  ADS  Google Scholar 

  4. Mayers, D.: Unconditional security in quantum cryptography. J. ACM 48, 351–406 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Nguyen, B.A.: Quantum dialogue. Phys. Lett. A 328, 6–10 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Ji, X., Zhang, S.: Secure quantum dialogue based on single-photon. Chin. Phys. 15, 1418–1420 (2006)

    Article  ADS  Google Scholar 

  7. Shi, G.F., Xi, X.Q., Hu, M.L., Yue, R.H.: Quantum dialogue by using single photons. Opt. Commun. 283, 1984–1986 (2010)

    Article  ADS  Google Scholar 

  8. Luo, Y.P., Lin, C.Y., Hwang, T.: Efficient quantum dialogue using single photons. Quantum Inf. Process. 13, 2451–2461 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wen, X.J., Liu, Y., Zhou, N.R.: Secure quantum telephone. Opt. Commun. 275, 278–282 (2007)

    Article  ADS  Google Scholar 

  10. Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Revisiting the security of quantum dialogue and bidirectional quantum secure direct communication. Sci. China Ser. G 51, 559–566 (2008)

    Article  Google Scholar 

  11. Gao, G.: Two quantum dialogue protocols without information leakage. Opt. Commun. 283, 2288–2293 (2010)

    Article  ADS  Google Scholar 

  12. Zhou, N.R., Wu, G.T., Gong, L.H., Liu, S.Q.: Secure quantum dialogue protocol based on W states without information leakage. Int. J. Theor. Phys. 52, 3204–3211 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhou, N.R., Hua, T.X., Wu, G.T., He, C.S., Zhang, Y.: Single-photon secure quantum dialogue protocol without information leakage. Int. J. Theor. Phys. 53, 3829–3837 (2014)

    Article  MATH  Google Scholar 

  14. Jouguet, P., Kunz-Jacques, S., Leverrier, A., Grangier, P., Diamanti, E.: Experimental demonstration of long-distance continuous-variable quantum key distribution. Nat. Photonics 7, 378–381 (2013)

    Article  ADS  Google Scholar 

  15. Pirandola, S., Braunstein, S.L., Lloyd, S., Mancini, S.: Confidential direct communication: a quantum approach using continuous variables. IEEE J. Quantum Electron. 15, 1570 (2009)

    Article  Google Scholar 

  16. Song, H.C., Gong, L.H., Zhou, N.R.: Tripartite quantum deterministic key distribution based on GHZ states. Acta Phys. Sin. 61, 214203 (2012)

    Google Scholar 

  17. Furrer, F., Franz, T., Berta, M., Leverrier, A., Scholz, V.B.: Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks. Phys. Rev. Lett. 109, 100502 (2012)

    Article  ADS  Google Scholar 

  18. Huang, P., He, G.Q., Fang, J., Zeng, G.H.: Performance improvement of continuous-variable quantum key distribution via photon subtraction. Phys. Rev. A 87, 012317 (2013)

    Article  ADS  Google Scholar 

  19. Huang, P., He, G.Q., Zeng, G.H.: Bound on noise of coherent source for secure continuous-variable quantum key distribution. Int. J. Theor. Phys. 52, 1572–1582 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, Y.J., Huang, P., Guo, Y., Huang, D.Z.: Photon-monitoring attack on continuous-variable quantum key distribution with source in middle. Quantum Inf. Process. 13, 2745–2757 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Wang, T., Yu, S., Zhang, Y.C., Gu, W., Guo, H.: Improving the maximum transmission distance of continuous-variable quantum key distribution with noisy coherent states using a noiseless amplifier. Phys. Lett. A 378, 2808–2812 (2014)

    Article  ADS  MATH  Google Scholar 

  22. Menicucci, N.C.: Fault-tolerant measurement-based quantum computing with continuous-variable cluster states. Phys. Rev. Lett. 112, 120504 (2014)

    Article  ADS  Google Scholar 

  23. Fang, J., Huang, P., Zeng, G.H.: Multichannel parallel continuous-variable quantum key distribution with Gaussian modulation. Phys. Rev. A 89, 022315 (2014)

    Article  ADS  Google Scholar 

  24. Toliver, P., Dailey, J.M., Agarwal, A., Peters, N.A.: Continuously active interferometer stabilization and control for time-bin entanglement distribution. Opt. Express 23, 4135–4143 (2015)

    Article  ADS  Google Scholar 

  25. Wang, S., Hou, L.L., Chen, X.F., Xu, X.F.: Continuous-variable quantum teleportation with non-Gaussian entangled states generated via multiple-photon subtraction and addition. Phys. Rev. A 91, 063832 (2015)

    Article  ADS  Google Scholar 

  26. Yu, Z.B., Gong, L.H., Zhu, Q.B., Cheng, S., Zhou, N.R.: Efficient three-party quantum dialogue protocol based on the continuous variable GHZ states. Int. J. Theor. Phys. 55, 3147–3155 (2016)

    Article  MathSciNet  Google Scholar 

  27. Hjelme, D.R., Lydersen, L., Makarov, V.: Quantum cryptography. Contemp. Phys. 74, 145–195 (2011)

    Google Scholar 

  28. Chao, Z., Long, G.F.: Quantum secure direct dialogue using Einstein–Podolsky–Rosen pairs. Sci. China Phys. Mech. Astron. 57, 1238–1243 (2014)

    Article  ADS  Google Scholar 

  29. Johannesson, R., Zigangirov, K.S.: Low-Density Parity-Check Codes, vol. 8. MIT Press, Cambridge (2014)

    Google Scholar 

  30. Berrou, C., Glavieux, A.: Near optimum error correcting coding and decoding: turbo-codes. IEEE Trans. Commun. 44, 1261–1271 (2010)

    Article  Google Scholar 

  31. Lo, H., Ma, X.F., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 1–127 (2011)

    Google Scholar 

  32. Chong, S.K., Hwang, T.: The enhancement of three-party simultaneous quantum secure direct communication scheme with EPR pairs. Opt. Commun. 284, 515–518 (2011)

    Article  ADS  Google Scholar 

  33. Song, H.C., Gong, L.H., Zhou, N.R.: Continuous-variable quantum deterministic key distribution protocol based on quantum teleportation. Acta Phys. Sin. 61, 154206 (2012)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61561033 and 61462061), the China Scholarship Council (Grant No. 201606825042), the Department of Human Resources and Social security of Jiangxi Province, the Major Academic Discipline and Technical Leader of Jiangxi Province (Grant No. 20162BCB22011), and the Natural Science Foundation of Jiangxi Province (Grant No. 20151BAB207002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan-Run Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, NR., Li, JF., Yu, ZB. et al. New quantum dialogue protocol based on continuous-variable two-mode squeezed vacuum states. Quantum Inf Process 16, 4 (2017). https://doi.org/10.1007/s11128-016-1461-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-016-1461-2

Keywords

Navigation