Skip to main content
Log in

Generalized quantum counting algorithm for non-uniform amplitude distribution

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We give generalized quantum counting algorithm to increase universality of quantum counting algorithm. Non-uniform initial amplitude distribution is possible due to the diversity of situations on counting problems or external noise in the amplitude initialization procedure. We give the reason why quantum counting algorithm is invalid on this situation. By modeling in three-dimensional space spanned by unmarked state, marked state and free state to the entire Hilbert space of n qubits, we find Grover iteration can be regarded as improper rotation in the space. This allows us to give formula to solve counting problem. Furthermore, we express initial amplitude distribution in the eigenvector basis of improper rotation matrix. This is necessary to obtain mathematical analysis of counting problem on various situations. Finally, we design four simulation experiments, the results of which show that compared with original quantum counting algorithm, generalized quantum counting algorithm wins great satisfaction from three aspects: (1) Whether initial amplitude distribution is uniform; (2) the diversity of situations on counting problems; and (3) whether phase estimation technique can get phase exactly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brassard, G., Hoyer, P., Tapp, A.: Quantum counting. arXiv preprint arXiv:quant-ph/9805082 (1998)

  2. Casella, G., Berger, R.L.: Statistical Inference, vol. 2. Duxbury, Pacific Grove (2002)

    MATH  Google Scholar 

  3. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  4. Boyer, M., Brassard, G., Hoyer, P., Tapp, A.: Tight bounds on quantum searching. arXiv preprint arXiv:quant-ph/9605034 (1996)

  5. Mosca, M., et al.: Quantum searching, counting and amplitude amplification by eigenvector analysis. Mfcs’98 Workshop on Randommized Algorithms (1998)

  6. Mosca, M.: Counting by quantum eigenvalue estimation. Theor. Comput. Sci. 264(1), 139–153 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Diao, Z., Huang, C., Wang, K.: Quantum counting: algorithm and error distribution. Acta applicandae mathematicae 118(1), 147–159 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Caraiman, S., Manta, V.I.: Histogram-based segmentation of quantum images. Theor. Comput. Sci. 529, 46–60 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Morawiec, A.: Orientations and Rotations, Chapter Preliminaries. Springer, Berlin (2003)

    Google Scholar 

  10. Salomon, D.: Computer Graphics and Geometric Modeling, Chapter Improper Rotations. Springer, New York (1999)

    Book  MATH  Google Scholar 

  11. Grover, L.K.: A fast quantum mechanical algorithm for database search. Annual Acm Symposium on Theory of Computing (1996)

  12. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325 (1997)

    Article  ADS  Google Scholar 

  13. Kitaev, A.Y.: Quantum measurements and the abelian stabilizer problem. arXiv preprint arXiv:quant-ph/9511026 (1995)

  14. Cleve, R., Ekert, A., Macchiavello, C., Mosca, M.: Quantum algorithms revisited. Proceedings of the Royal Society A Mathematical Physical and Engineering Sciences (1998)

  15. Mosca, M.: Quantum Computer Algorithms. Ph.D. Thesis, Oxford University Press (1999)

  16. Brassard, G., Hoyer, P.: An exact quantum polynomial-time algorithm for Simon’s problem. Proceedings of the 5th Israeli Symposium on Theory of Computing and Systems (1997)

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61170321,61502101), Natural Science Foundation of Jiangsu Province, China (Grant No. BK20140651), Natural Science Foundation of Anhui Province, China (Grant No. 1708085MF162), Research Fund for the Doctoral Program of Higher Education (Grant No. 20110092110024), Foundation for Natural Science Foundation of Jiangsu Province, China (Grant No. BK20140823) and the open fund of Key Laboratory of Computer Network and Information Integration in Southeast University, Ministry of Education, China (Grant No. K93-9-2015-10C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanwu Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, J., Ruan, Y., Li, X. et al. Generalized quantum counting algorithm for non-uniform amplitude distribution. Quantum Inf Process 16, 62 (2017). https://doi.org/10.1007/s11128-016-1471-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-016-1471-0

Keywords

Navigation