Skip to main content
Log in

Privacy-preserving point-inclusion protocol for an arbitrary area based on phase-encoded quantum private query

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The point-inclusion problem is an important secure multi-party computation that it involves two parties, where one has a private point and the other has a private area, and they want to determine whether the point is inside the area without revealing their respective private information. All previously proposed point-inclusion protocols are only suitable for a specific area, such as circle, rectangle and convex polygon. In this paper, we present a novel privacy-preserving point-inclusion quantum protocol for an arbitrary area, which is surrounded by any plane geometric figure. Compared to the classical related protocols, our protocol has the advantages of the higher security and the lower communication complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Yao, A.: Protocols for secure computations. In: Proceedings of 23rd Annual Symposium on Foundations of Computer Science (FOCS ’82), Chicago, USA, pp. 160–164. IEEE Computer Society Press, New York (1982)

  2. Atallah, M.J., Du, W.: Secure multi-party computational geometry. In: Proceedings of 7th International Workshop on Algorithms and Data Structures, pp. 165–179. Springer, Providence (2001)

  3. Luo, Y., Huang, L., Zhong, H., et al.: A secure protocol for determining whether a point is inside a convex polygon. Chin. J. Electron. 15(4), 578–582 (2006)

    Google Scholar 

  4. Troncoso-Pastoriza, J.R., Katzenbeisser, S., Celik, M., et al.: A secure multidimensional point inclusion protocol. In: Proceedings of 9th ACM Multimedia and Security Workshop (MM&SEC’07), Dallas, TX, Assoc Computing Machinery, pp. 109–119 (2007)

  5. Ye, Y., Huang, L., Yang, W., et al.: Efficient secure protocols to determine whether a point is inside a convex hull. In: Proceedings of 1st International Symposium on Information Engineering and Electronic Commerce (IEEC 2009), Ternopil, Ukraine, IEEE Computer Soc., pp. 100–105 (2009)

  6. Li, S., Wang, D., Dai, Y.: Efficient secure multiparty computational geometry. Chin. J. Electron. 19(2), 324–328 (2010)

    Google Scholar 

  7. Shor, P. W.: Algorithms for quantum computation: discrete log and factoring. In: Proceedings of 35th Annual Symposium on the Foundations of Computer Science, Santa Fe, New Mexico, pp. 124–134. IEEE, New York (1994)

  8. Grover, L. K.: A fast quantum mechanical algorithm for database search. In: Proceedings of 28th Annual ACM Symposium on Theory of Computing, Coimbra, Portugal, pp. 212–219. ACM, New York (1996)

  9. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum private queries. Phys. Rev. Lett. 100, 230502 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Olejnik, L.: Secure quantum private information retrieval using phase-encoded queries. Phys. Rev. A 84, 022313 (2011)

    Article  ADS  Google Scholar 

  11. Shi, R.-H., Mu, Y., Zhong, H., Zhang, S.: Quantum oblivious set-member decision protocol. Phys. Rev. A 92, 022309 (2015)

    Article  ADS  Google Scholar 

  12. Shi, R.-H., Mu, Y., Zhong, H., Cui, J., Zhang, S.: An efficient quantum scheme for Private Set Intersection. Quantum Inf. Process. 15(1), 363–371 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Weimann, S., Perez-Leija, A., Lebugle, M., et al.: Implementation of quantum and classical discrete fractional fourier transforms. Nat. Commun. 7, 11027 (2016)

    Article  ADS  Google Scholar 

  14. Dogra, S., Dorai, A., Dorai, K.: Implementation of the quantum Fourier transform on a hybrid qubit-qutrit NMR quantum emulator. Int. J. Quantum Inf. 13(7), 1550059 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, Y.L., Huang, J.S., Xu, Z.H.: Implementation of a remote three-qubit controlled-Z gate via quantum zeno dynamics. Int. J. Theor. Phys. 54(5), 1680–1688 (2015)

    Article  MATH  Google Scholar 

  16. Li, W.A., Wei, L.F.: One-step implementation of quantum controlled-phase gate via quantum zeno dynamics. Quantum Inf. Compt. 14(1–2), 137–143 (2014)

    MathSciNet  Google Scholar 

  17. Dong, D., Zhang, Y.L., Zou, C.L., et al.: Scheme for purifying a general mixed entangled state and its linear optical implementation. Chin. Phys. B 24(10), 100306 (2015)

    Article  ADS  Google Scholar 

  18. Smania, M., Elhassan, A.M., Tavakoli, A., Bourennane, M.: Experimental quantum multiparty communication protocols. NPJ Quantum Inf. 2, 16010 (2016)

    Article  ADS  Google Scholar 

  19. Chen, Y.H., Xia, Y., Chen, Q.Q., et al.: Fast and noise-resistant implementation of quantum phase gates and creation of quantum entangled states. Phys. Rev. A 91(1), 012325 (2015)

    Article  ADS  Google Scholar 

  20. Liu, H.W., Wang, F., Li, H.R., et al.: Optimal bipartite entanglement transfer and photonic implementations. Opt. Commun. 334(1), 273–279 (2015)

    ADS  Google Scholar 

  21. Meng, F., Zhu, A., Yeon, K.H., et al.: Preparation of multipartite entangled states and one-step implementation of 1 \(\rightarrow \) M economical phase-covariant quantum anti-cloning in cavity QED. Phys. Scr. 81(1), 015009 (2010)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (61173187, 61572001), Ph.D. Programs Foundation of Ministry of Education of China (20133401110004), Natural Science Foundation of Anhui Province (1408085QF107), Talents Youth Fund of Anhui Province Universities (2013SQRL006ZD), 211 Project of Anhui University (17110099).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Run-hua Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Rh., Mu, Y., Zhong, H. et al. Privacy-preserving point-inclusion protocol for an arbitrary area based on phase-encoded quantum private query. Quantum Inf Process 16, 8 (2017). https://doi.org/10.1007/s11128-016-1476-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-016-1476-8

Keywords

Navigation