Abstract
We present some compact circuits for a deterministic quantum computing on the hybrid photon–atom systems, including the Fredkin gate and SWAP gate. These gates are constructed by exploiting the optical Faraday rotation induced by an atom trapped in a single-sided optical microcavity. The control qubit of our gates is encoded on the polarization states of the single photon, and the target qubit is encoded on the ground states of an atom confined in an optical microcavity. Since the decoherence of the flying qubit with atmosphere for a long distance is negligible and the stationary qubits are trapped inside single-sided microcavities, our gates are robust. Moreover, ancillary single photon is not needed and only some linear-optical devices are adopted, which makes our protocols efficient and practical. Our schemes need not meet the condition that the transmission for the uncoupled cavity is balanceable with the reflectance for the coupled cavity, which is different from the quantum computation with a double-sided optical microcavity. Our calculations show that the fidelities of the two hybrid quantum gates are high with the available experimental technology.




Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature (London) 409, 46 (2001)
Long, G.L., Xiao, L.: Parallel quantum computing in a single ensemble quantum computer. Phys. Rev. A 69, 052303 (2004)
Feng, G.R., Xu, G.F., Long, G.L.: Experimental realization of nonadiabatic holonomic quantum computation. Phys. Rev. Lett. 110, 190501 (2013)
Hu, C.Y., Young, A., O’Brien, J.L., Munro, W.J., Rarity, J.G.: Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon. Phys. Rev. B 78, 085307 (2008)
Wei, H.R., Deng, F.G.: Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities. Phys. Rev. A 87, 022305 (2013)
Wei, H.R., Deng, F.G.: Scalable quantum computing based on stationary spin qubits in coupled quantum dots inside double-sided optical microcavities. Sci. Rep. 4, 7551 (2014)
Wang, T.J., Wang, C.: Universal hybrid three-qubit quantum gates assisted by a nitrogen-vacancy center coupled with a whispering-gallery-mode microresonator. Phy. Rev. A 90, 052310 (2014)
Ren, B.C., Wei, H.R., Deng, F.G.: Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by quantum dot inside one-side optical microcavity. Laser Phys. Lett. 10, 095202 (2013)
Ren, B.C., Deng, F.G.: Hyper-parallel photonic quantum computing with coupled quantum dots. Sci. Rep. 4, 4623 (2014)
Ren, B.C., Wang, G.Y., Deng, F.G.: Universal hyperparallel hybrid photonic quantum gates with dipole-induced transparency in the weak-coupling regime. Phys. Rev. A 91, 032328 (2015)
Wei, H.R., Deng, F.G., Long, G.L.: Hyper-parallel Toffoli gate on three-photon system with two degrees of freedom assisted by single-sided optical microcavities. Opt. Express 24, 18619–18630 (2016)
Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457 (1995)
Nielsen, M.A.: Optical quantum computation using cluster states. Phys. Rev. Lett. 93, 040503 (2004)
Nemoto, K., Munro, W.J.: Nearly deterministic linear optical controlled-NOT gate. Phys. Rev. Lett. 93, 250502 (2004)
Browne, D.E., Rudolph, T.: Resource-efficient linear optical quantum computation. Phys. Rev. Lett. 95, 010501 (2005)
Hu, C.Y., Munro, W.J., O’Brien, J.L., Rarity, J.G.: Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity. Phys. Rev. B 80, 205326 (2009)
Beenakker, C.W.J., DiVincenzo, D.P., Emary, C., Kindermann, M.: Charge detection enables free-electron quantum computation. Phys. Rev. Lett. 93, 020501 (2004)
Yamamoto, T., Pashkin, Y.A., Astafiev, O., Nakamura, Y., Tsai, J.S.: Demonstration of conditional gate operation using superconducting charge qubits. Nature (London) 425, 941–944 (2003)
Clarke, J., Wilhelm, F.K.: Superconducting quantum bits. Nature (London) 453, 1031–1042 (2008)
Hua, M., Tao, M.J., Deng, F.G.: Fast universal quantum gates on microwave photons with all-resonance operations in circuit QED. Sci. Rep. 5, 9274 (2015)
Shende, V.V., Markov, I.L., Bullock, S.S.: Minimal universal two-qubit controlled-NOT-based circuits. Phys. Rev. A 69, 062321 (1995)
Fredkin, E., Toffoli, T.: Conservative logic. Int. J. Theor. Phys. 21, 219 (1982)
Shi, Y.Y.: Both Toffoli and controlled-NOT need little help to do universal quantum computing. Quantum Inf. Comput. 3, 84 (2003)
Liang, L.M., Li, C.Z.: Realization of quantum SWAP gate between flying and stationary qubits. Phys. Rev. A 72, 024303 (2005)
Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484 (1997)
Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325 (1997)
Long, G.L.: Grover algorithm with zero theoretical failure rate. Phys. Rev. A 64, 022307 (2001)
Dennis, E.: Toward fault-tolerant quantum computation without concatenation. Phys. Rev. A 63, 052314 (2001)
Cory, D.G., Price, M.D., Maas, W., Knill, E., Laflamme, R., Zurek, W.H., Havel, T.F., Somaroo, S.S.: Experimental quantum error correction. Phys. Rev. Lett. 81, 2152 (1998)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University, Cambridge (2000)
Vidal, G., Dawson, C.M.: Universal quantum circuit for two-qubit transformations with three controlled-NOT gates. Phys. Rev. A 69, 010301 (2004)
Heilmann, R., Gräfe, M., Nolte, S., Szameit, A.: A novel integrated quantum circuit for high-order W-state generation and its highly precise characterization. Sci. Bull. 60, 96 (2015)
Xu, J.S., Li, C.F.: Quantum integrated circuit: classical characterization. Sci. Bull. 60, 141 (2015)
Berry, M.V.: Transitionless quantum driving. J. Phys. A Math. Theor. 42, 365303 (2009)
Ibáñez, S., Chen, X., Torrontegui, E., Muga, J.G., Ruschhaupt, A.: Multiple Schrödinger pictures and dynamics in shortcuts to adiabaticity. Phys. Rev. Lett. 109, 100403 (2012)
Xu, G.F., Long, G.L.: Protecting geometric gates by dynamical decoupling. Phys. Rev. A 90, 022323 (2014)
Xu, G.F., Long, G.L.: Universal nonadiabatic geometric gates in two-qubit decoherence-free subspaces. Sci. Rep. 4, 6814 (2014)
Song, X.K., Zhang, H., Ai, Q., Qiu, J., Deng, F.G.: Shortcuts to adiabatic holonomic quantum computation in decoherence-free subspace with transitionless quantum driving algorithm. New J. Phys. 18, 023001 (2016)
Song, X.K., Ai, Q., Qiu, J., Deng, F.G.: Physically feasible three-level transitionless quantum driving with multiple Schrödinger dynamics. Phys. Rev. A 93, 052324 (2016)
Duan, L.M., Kimble, H.J.: Efficient engineering of multiatom entanglement through single-photon detections. Phys. Rev. Lett. 90, 253601 (2003)
Duan, L.M., Kuzmich, A., Kimble, H.J.: Cavity QED and quantum-information processing with hot trapped atoms. Phys. Rev. A 67, 032305 (2003)
Cho, J., Lee, H.W.: Generation of atomic cluster states through the cavity input–output process. Phys. Rev. Lett. 95, 160501 (2005)
Boozer, A.D., Boca, A., Miller, R., Northup, T.E., Kimble, H.J.: Reversible state transfer between light and a single trapped atom. Phys. Rev. Lett. 98, 193601 (2007)
Wei, H., Deng, Z.J., Zhang, X.L., Feng, M.: Transfer and teleportation of quantum states encoded in decoherence-free subspace. Phys. Rev. A 76, 054304 (2007)
Yang, Z.B., Wu, H.Z., Su, W.J., Zheng, S.B.: Quantum phase gates for two atoms trapped in separate cavities within the null- and single-excitation subspaces. Phys. Rev. A 80, 012305 (2009)
Wang, C., Zhang, Y., Jiao, R.Z., Jin, G.S.: Universal quantum controlled phase gate on photonic qubits based on nitrogen vacancy centers and microcavity resonators. Opt. Express 21, 19252–19260 (2013)
Wei, H.R., Deng, F.G.: Compact quantum gates on electron-spin qubits assisted by diamond nitrogen-vacancy centers inside cavities. Phys. Rev. A 88, 042323 (2013)
Wang, H.F., Zhu, A.D., Zhang, S., Yeon, K.H.: Optically controlled phase gate and teleportation of a controlled-not gate for spin qubits in a quantum-dotCmicrocavity coupled system. Phys. Rev. A 87, 062337 (2013)
Wang, H.F., Zhu, A.D., Zhang, S.: One-step implementation of a multiqubit phase gate with one control qubit and multiple target qubits in coupled cavities. Opt. Lett. 39, 1489 (2014)
Reiserer, A., Kalb, N., Rempe, G., Ritter, S.: A quantum gate between a flying optical photon and a single trapped atom. Nature (London) 508, 237–240 (2014)
Wei, H.R., Long, G.L.: Hybrid quantum gates between flying photon and diamond nitrogen-vacancy centers assisted by optical microcavities. Sci. Rep. 5, 12918 (2015)
Song, L.C., Xia, Y., Jie Song, J.: Experimentally optimized implementation of the Fredkin gate with atoms in cavity QED. Quantum Inform. Process. 14, 511–529 (2015)
Peng, Z.H., Kuang, L.M., Zou, J., Zhang, Y.Q., Liu, X.J.: Quantum controlled-not gate in the bad cavity regime. Quantum Inform. Process. 14, 2833–2846 (2015)
Bai, C.H., Wang, D.Y., Hu, S., Cui, W.X., Jiang, X.X., Wang, H.F.: Scheme for implementing multitarget qubit controlled-NOT gate of photons and controlled-phase gate of electron spins via quantum dot-microcavity coupled system. Quantum Inform. Process. 15, 1485–1498 (2016)
Wang, T.J., Wang, C.: Parallel quantum computing teleportation for spin qubits in quantum dot and microcavity coupled system. IEEE J. Sel. Top. Quantum Electron. 21(3), 6500107 (2015)
Barends, R., Shabani, A., Lamata, L., Kelly, J., Mezzacapo, A., Las Heras, U., Babbush, R., Fowler, A.G., Campbell, B., Chen, Y., Chen, Z., Chiaro, B., Dunsworth, A., Jeffrey, E., Lucero, E., Megrant, A., Mutus, J.Y., Neeley, M., Neill, C., O’Malley, P.J.J., Quintana, C., Roushan, P., Sank, D., Vainsencher, A., Wenner, J., White, T.C., Solano, E., Neven, H., Martinis, J.M.: Digitized adiabatic quantum computing with a superconducting circuit. Nature (London) 534, 222–226 (2016)
Duan, L.M., Kimble, H.J.: Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004)
Chen, C.Y., Feng, M., Gao, K.L.: Toffoli gate originating from a single resonant interaction with cavity QED. Phys. Rev. A 73, 064304 (2006)
Deng, Z.J., Zhang, X.L., Wei, H., Gao, K.L., Feng, M.: Implementation of a nonlocal N-qubit conditional phase gate by single-photon interference. Phys. Rev. A 76, 044305 (2007)
Koshino, K., Ishizaka, S., Nakamura, Y.: Deterministic photon-photon \(\sqrt{SWAP}\) gate using a system. Phys. Rev. A 82, 010301 (2010)
Wang, T.J., Zhang, Y., Wang, C.: Universal hybrid hyper-controlled quantum gates assisted by quantum dots in optical double-sided microcavities. Laser Phys. Lett. 11, 025203 (2014)
Turchette, Q.A., Hood, C.J., Lange, W., Mabuchi, H., Kimble, H.J.: Measurement of conditional phase shifts for quantum logic. Phys. Rev. Lett. 75, 4710 (1995)
Cirac, J.I., Zoller, P., Kimble, H.J., Mabuchi, H.: Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221 (1997)
Monroe, C.: Quantum information processing with atoms and photons. Nature (London) 416, 238 (2002)
Chen, Q., Feng, M.: Quantum-information processing in decoherence-free subspace with low-Q cavities. Phys. Rev. A 82, 052329 (2010)
Wei, H.R., Deng, F.G.: Compact implementation of the \((SWAP)^a\) gate on diamond nitrogen-vacancy centers coupled to resonators. Quantum Inf. Process. 14, 465–477 (2015)
Fortier, K.M., Kim, Y., Gibbons, M.J., Ahmadi, P., Chapman, M.S.: Deterministic loading of individual atoms to a high-finesse optical cavity. Phys. Rev. Lett. 98, 233601 (2007)
Wilk, T., Webster, S.C., Kuhn, A., Rempe, G.: Single-atom single-photon quantum interface. Science 317, 488 (2007)
Reiserer, A., Ritter, S., Rempe, G.: Nondestructive detection of an optical photon. Science 342, 1349 (2013)
Siyushev, P., Stein, G., Wrachtrup, J., Gerhardt, I.: Molecular photons interfaced with alkali atoms. Nature (London) 509, 66 (2014)
Walls, D.F., Milburn, G.J.: Quantum Optics. Springer, Berlin (1994)
An, J.H., Feng, M., Oh, C.H.: Quantum-information processing with a single photon by an input–output process with respect to low-Q cavities. Phys. Rev. A 79, 032303 (2009)
Bastos, W.P., Cardoso, W.B., Avelar, A.T., de Almeida, N.G., Baseia, B.: Controlled teleportation via photonic Faraday rotations in low-Q cavities. Quantum Inf. Process. 11, 1867 (2012)
Peng, Z.H., Zou, J., Liu, X.J., Xiao, Y.J., Kuang, L.M.: Atomic and photonic entanglement concentration via photonic Faraday rotation. Phys. Rev. A 86, 034305 (2012)
Sheng, Y.B., Zhou, L., Wang, L., Zhao, S.M.: Efficient entanglement concentration for quantum dot and optical microcavities systems. Quantum Inf. Process. 12, 1885 (2013)
Sheng, Y.B., Zhou, L.: Efficient W-state entanglement concentration using quantum-dot and optical microcavities. J. Opt. Soc. Am. B 30, 678 (2013)
Zhou, L., Wang, X.F., Sheng, Y.B.: Efficient entanglement concentration for arbitrary less-entangled N-atom GHZ state. Int. J. Theor. Phys. 53, 1752–1766 (2014)
Wei, H.R., Deng, F.G.: Scalable photonic quantum computing assisted by quantum-dot spin in double-sided optical microcavity. Opt. Express 21, 17671–17685 (2013)
Dayan, B., Parkins, A.S., Takao, Aoki, Ostby, E.P., Vahala, K.J., Kimble, Hj: A photon turnstile dynamically regulated by one atom. Science 319, 1062 (2008)
Chiesa, A., Gerace, D., Troiani, F., Amoretti, G., Santini, P., Carretta, S.: Robustness of quantum gates with hybrid spin-photon qubits in superconducting resonators. Phys. Rev. A 89, 052308 (2014)
Bonato, C., Haupt, F., Oemrawsingh, S.S., Gudat, J., Ding, D., van Exter, M.P., Bouwmeester, D.: CNOT and Bell-state analysis in the weak-coupling cavity QED regime. Phys. Rev. Lett. 104, 160503 (2010)
Carretta, S., Chiesa, A., Troiani, F., Gerace, D., Amoretti, G., Santini, P.: Quantum information processing with hybrid spin-photon qubit encoding. Phys. Rev. Lett. 111, 110501 (2013)
Luo, M.X., Ma, S.Y., Chen, X.B., Wang, X.J.: Hybrid Toffoli gate on photons and quantum spins. Sci. Rep. 5, 16716 (2015)
Pritchard, J.D., Isaacs, J.A., Beck, M.A., McDermott, R., Saffman, M.: Hybrid atom–photon quantum gate in a superconducting microwave resonator. Phys. Rev. A 89, 010301(R) (2014)
Wang, G.Y., Liu, Q., Wei, H.R., Li, T., Ai, Q., Deng, F.G.: Universal quantum gates for photon–atom hybrid systems assisted by bad cavities. Sci. Rep. 6, 24183 (2016)
Acknowledgements
This work was supported by the National Natural Science Foundation of China under Grant Nos. 11174040 and 11475021, and the National Key Basic Research Program of China under Grant No. 2013CB922000.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Song, GZ., Yang, GJ. & Zhang, M. Compact quantum gates for hybrid photon–atom systems assisted by Faraday rotation. Quantum Inf Process 16, 54 (2017). https://doi.org/10.1007/s11128-016-1478-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-016-1478-6