Abstract
In this work, we further improve the distance of the quantum maximum distance separable (MDS) codes of length \(n=\frac{q^2+1}{10}\). This yields new families of quantum MDS codes. We also construct a family of new quantum MDS codes with parameters \([[\frac{q^2-1}{3}, \frac{q^2-1}{3}-2d+2, d]]_{q}\), where \(q=2^m\), \(2\le d\le \frac{q-1}{3}\) if \(3\mid (q+2)\), and \(2\le d\le \frac{2q-1}{3}\) if \(3\mid (q+1)\). Compared with the known quantum MDS codes, these quantum MDS codes have much larger minimum distance.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bierbrauer, J., Edel, Y.: Quantum twisted codes. J. Comb. Des. 8, 174–188 (2000)
Calderbank, A.R., Rains, E.M., Shor, P.M., Sloane, N.J.A.: Quantum error correction via codes over GF(4). IEEE Trans. Inf. Theory 44, 1369–1387 (1998)
Chen, B., Ling, S., Zhang, G.: Application of constacyclic codes to quantum MDS codes. arXiv:1403.2499 (2014)
Chen, B., Ling, S., Zhang, G.: Application of constacyclic codes to quantum MDS codes. IEEE Trans. Inf. Theory 61, 1474–1484 (2015)
Feng, K.: Quantum codes \([[6, 2, 3]]_p\) and \([[7, 3, 3]]_p\) \((p\ge 3)\) exist. IEEE Trans. Inf. Theory 48, 2384–2391 (2002)
Grassl, M., Beth, T., Rotteler, M.: On optimal quantum codes. Int. J. Quantum Inf. 2(1), 757–766 (2004)
Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003)
Jin, L., Ling, S., Luo, J., Xing, C.: Application of classical Hermitian self-orthogonal MDS codes to quantum MDS codes. IEEE Trans. Inf. Theory 56, 4735–4740 (2010)
Jin, L., Xing, C.: A construction of new quantum MDS codes. IEEE Trans. Inf. Theory 60, 2921–2925 (2014)
Kai, X., Zhu, S.: New quantum MDS codes from negacyclic codes. IEEE Trans. Inf. Theory 59, 1193–1197 (2013)
Ketkar, A., Klappenecker, A., Kumar, S., Sarvepalli, P.K.: Nonbinary quantum stabiliter codes over finite fields. IEEE Trans. Inf. Theory 52, 4892–4914 (2006)
La Guardia, G.G.: New quantum MDS codes. IEEE Trans. Inf. Theory 57, 5551–5554 (2011)
Li, R., Xu, Z.: Construction of \([[n, n-4, 3]]_q\) quantum codes for odd prime power \(q\). Phys. Rev. A 82(1–4), 052316 (2010)
Shor, P.W.: Scheme for reducing decoherence in quantum memory. Phys. Rev. A 52, 2493–2496 (1995)
Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793–797 (1996)
Acknowledgements
We are indebted to the anonymous referees for their valuable comments and suggestions that helped to improve significantly the quality of this paper. This work was supported by the Anhui Provincial Natural Science Foundation (1408085MA05).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Qian, J., Zhang, L. Improved constructions for quantum maximum distance separable codes. Quantum Inf Process 16, 20 (2017). https://doi.org/10.1007/s11128-016-1490-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-016-1490-x