Skip to main content
Log in

Network realization of triplet-type quantum stochastic systems

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

This paper focuses on a problem of network synthesis for a class of quantum stochastic systems. The systems under consideration are of triplet-type form and stem from linear quantum optics and linear quantum circuits. A new quantum network realization approach is proposed by generalizing the scattering operator from the scalar form to a unitary matrix in network components. It shows that the triplet-type quantum stochastic system can be approximated by a quantum network which consists of some one-degree-of-freedom generalized open-quantum harmonic oscillators (1DGQHOs) via series, concatenation and feedback connections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Miao, Z., James, M.R., Peterson, I.R.: Coherent observers for linear quantum stochastic systems. Automatica 71, 264–271 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Techakesari, O., Nurdin, H.: On the quasi-balanceable class of linear quantum stochastic systems. Syst. Control Lett. 78, 25–31 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Wang, S., James, M.R.: Quantum feedback control of linear stochastic systems with feedback-loop time delays. Automatica 52, 277–282 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Guţǎ, M., Yamamoto, N.: System identification for passive linear quantum systems. IEEE Trans. Autom. Control 61(4), 921–936 (2015)

    MathSciNet  Google Scholar 

  5. Gardiner, C., Zoller, P.: Springer Series in Synergetics, Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics, 2nd edn. Springer, Berlin (2000)

    MATH  Google Scholar 

  6. Yurke, B.S., Denker, J.S.: Quantum network theory. Phys. Rev. A 29(3), 1419–1437 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  7. Yanagisawa, M., Kimura, H.: Transfer function approach to quantum control-part II: control concepts and applications. IEEE Trans. Autom. Control 48(12), 2121–2132 (2003)

    Article  Google Scholar 

  8. Mabuchi, H.: Coherent-feedback quantum control with a dynamic compensator. Phys. Rev. A 78, 032323 (2008)

    Article  ADS  Google Scholar 

  9. James, M.R., Nurdin, H.I., Petersen, I.R.: \(H^\infty \) control of linear quantum stochastic systems. IEEE Trans. Autom. Control 53, 1787–1803 (2008)

    Article  MathSciNet  Google Scholar 

  10. Nurdin, H.I., James, M.R., Petersen, I.R.: Coherent quantum LQG control. Autom. J. IFAC 45, 1837–1846 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Nurdin H.I.: Topics in classical and quantum linear stochastic systems. Ph.D. dissertation, The Australian National University, Canberra (2007)

  12. Nurdin H.I., James M.R., Petersen I.R.: Quantum LQG control with quantum mechanical controllers. In: Proceedings of the 17th IFAC World Congress (2008)

  13. Schoelkopf, R.J., Girvin, S.M.: Wiring up quantum systems. Nature 451, 664–669 (2008)

    Article  ADS  Google Scholar 

  14. Tian, L., Carr, S.M.: Scheme for quantum teleportation between nanomechanical modes. Phys. Rev. B 74, 125314 (2006)

    Article  ADS  Google Scholar 

  15. Nurdin, H.I., James, M.R., Doherty, A.C.: Network synthesis of linear dynamical quantum stochastic systems. SIAM J. Control Optim. 48(4), 2686–2718 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Nurdin, H.I.: Synthesis of linear quantum stochastic systems via quantum feedback networks. IEEE Trans. Autom. Control 55(4), 1008–1013 (2010)

    Article  MathSciNet  Google Scholar 

  17. Gough, J., James, M.R.: The series product and its application to quantum feedforward and feedback networks. IEEE Trans. Autom. Control 54(11), 2530–2544 (2009)

    Article  MathSciNet  Google Scholar 

  18. Gough, J., James, M.R.: Quantum feedback networks: Hamiltonian formulation. Commun. Math. Phys. 287, 1109–1132 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Davies, E.C.: One-Parameter Semigroups. Academic Press Inc., London (1980)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaosheng Zhou.

Additional information

This work was supported in part by the National Natural Science Foundation of P. R. China under Grants 61273093, 61673149, and also by the National Natural Science Foundation of Zhejiang Province under Grants LZ12F03001.

Appendix

Appendix

The proof of Lemma 3

For \({\hat{R}}=(a_{jk})_{2 \times 2}\), the rank condition (17) implies that there exist vectors \({\hat{A}}\) and \({\hat{B}}\) defined in (20) such that (21) holds. Recalling (16), \({\hat{A}}=(a_1, a_2,\ldots , a_c)^T\) and \({\hat{B}}=(b_1, b_2,\ldots , b_c)^T\), we have

$$\begin{aligned} {\left\{ \begin{array}{ll} {\hat{A}}^T\Delta P=(a_1\alpha _1+a_2\alpha _2+\cdots +a_c\alpha _c)+i(a_1\beta _1+a_2\beta _2+\cdots +a_c\beta _c),\\ {\hat{B}}^T\Delta P=(b_1\alpha _1+b_2\alpha _2+\cdots +b_c\alpha _c)+i(b_1\beta _1+b_2\beta _2+\cdots +b_c\beta _c). \end{array}\right. } \end{aligned}$$
(37)

Substituting (21) into (37) leads to

$$\begin{aligned} {\left\{ \begin{array}{ll} {\hat{A}}^T\Delta P=-a_{12}+ia_{11},\\ {\hat{B}}^T\Delta P=a_{21}+ia_{22}. \end{array}\right. } \end{aligned}$$
(38)

It can be checked by \((A)^{\sharp }=(a_{ij})^*\) and \(\mathfrak {I}(A)=(A - A^\sharp )/2i\) that

$$\begin{aligned} \mathfrak {I}\left\{ K_{12}^\dag S_{12}(I-S_{21}S_{12})^{-1}K_{21} \right\}= & {} \mathfrak {I}\left\{ -\left[ K_{12}^\dag S_{12}(I-S_{21}S_{12})^{-1}K_{21}\right] ^\sharp \right\} \nonumber \\= & {} \mathfrak {I}\left\{ -K_{12}^T S_{12}^\sharp (I-S_{21}^\sharp S_{12}^\sharp )^{-1}K_{21}^\sharp \right\} . \end{aligned}$$
(39)

Then in terms of (15), we have

$$\begin{aligned}&\mathfrak {I}\left\{ K_{12}^\dag S_{12}(I-S_{21}S_{12})^{-1}K_{21}+K_{12}^T(I-S_{21}^T S_{12}^T)^{-1}S_{21}^TK_{21}^\sharp \right\} \nonumber \\&\quad =\mathfrak {I}\left\{ -K_{12}^T S_{12}^\sharp (I-S_{21}^\sharp S_{12}^\sharp )^{-1}K_{21}^\sharp +K_{12}^T(I-S_{21}^T S_{12}^T)^{-1}S_{21}^TK_{21}^\sharp \right\} \nonumber \\&\quad =\mathfrak {I}\left\{ K_{12}^T[(I-S_{21}^TS_{12}^T)^{-1}S_{21}^T-S_{12}^\sharp (I-S_{21}^\sharp S_{12}^\sharp )^{-1}]K_{21}^\sharp \right\} =\mathfrak {I}\left\{ K_{12}^T\Delta K_{21}^\sharp \right\} . \qquad \quad \end{aligned}$$
(40)

On the other hand, one has by (19) and (38) that

$$\begin{aligned} \mathfrak {I}\left\{ K_{12}^T\Delta K_{21}^\sharp \right\}= & {} \mathfrak {I}\left\{ \begin{bmatrix} {\hat{A}}^T\Delta P&-i{\hat{A}}^T\Delta P\\ i {\hat{B}}^T\Delta P&{\hat{B}}^T\Delta P \end{bmatrix}\right\} =\mathfrak {I}\left\{ \begin{bmatrix} -a_{12}+ia_{11}&ia_{12}+a_{11}\\ ia_{21}-a_{22}&a_{21}+ia_{22} \end{bmatrix}\right\} \\= & {} \begin{bmatrix} a_{11}&a_{12}\\ a_{21}&a_{22}\end{bmatrix} ={\hat{R}}, \end{aligned}$$

which together with (40) proves the lemma. \(\square \)

The proof of Theorem 1

In order to compute the triplet of quantum feedback network \(G_{\text {final-net}}\) constructed in the theorem, we determine the triplet of the reduced Markov model system \(G_\mathrm{red}=(S_\mathrm{red}, L_\mathrm{red}, H_\mathrm{red})\) obtained in the theorem. With \(S, R=(R_{jk}), K=\begin{bmatrix} K_{1}&K_{2}&\ldots&K_{n}\end{bmatrix}, R_j, S_{jk}, K_{jk}, j,k \in \mathbb {N}_n\), as defined above, from (11) in Lemma 1 one can obtain each element of triplet \(G_\mathrm{red}\) known as \(S_\mathrm{red}, L_\mathrm{red}\) and \(H_\mathrm{red}\). As \(S_\mathrm{red}\) and \(L_\mathrm{red}\) are available directly in the form of (11), only \(H_\mathrm{red}\) need to be calculated further

$$\begin{aligned} H_\mathrm{red}&=\sum ^n_{j=1}H_j+\sum ^{n-1}_{j=1}\sum ^n_{k=j+1}\mathfrak {I}\left\{ \begin{bmatrix} L_{jk}^\dag&L_{kj}^\dag \end{bmatrix}\begin{bmatrix} I&-S_{jk}\\ -S_{kj}&I \end{bmatrix}^{-1}\begin{bmatrix} L_{jk} \\ L_{kj}\end{bmatrix} \right\} . \end{aligned}$$

From (10), one has that

$$\begin{aligned} \mathbb {S}_{jk}^{-1}=\begin{bmatrix} (I-S_{jk}S_{kj})^{-1}&S_{jk}(I-S_{kj}S_{jk})^{-1}\\ S_{kj}(I-S_{jk}S_{kj})^{-1}&(I-S_{kj}S_{jk})^{-1} \end{bmatrix}, \end{aligned}$$

which leads to

$$\begin{aligned} H_\mathrm{red}&=\frac{1}{2}\sum ^n_{j=1}x_j^TR_jx_j\\&\quad +\sum ^{n-1}_{j=1}\sum ^n_{k=j+1}\mathfrak {I}\left\{ \begin{bmatrix} L_{jk}^\dag&L_{kj}^\dag \end{bmatrix} \begin{bmatrix} (I-S_{jk}S_{kj})^{-1}&S_{jk}(I-S_{kj}S_{jk})^{-1}\\ S_{kj}(I-S_{jk}S_{kj})^{-1}&(I-S_{kj}S_{jk})^{-1} \end{bmatrix}\begin{bmatrix} L_{jk} \\ L_{kj}\end{bmatrix}\right\} . \end{aligned}$$

Expanding, recombining, and changing the order of summation gives

$$\begin{aligned} H_\mathrm{red}&=\frac{1}{2}\sum ^n_{j=1}x_j^TR_jx_j+\sum ^{n-1}_{j=1}\sum ^n_{k=1, k\ne j}\mathfrak {I}\left\{ L_{jk}^\dag (I-S_{jk}S_{kj})^{-1}L_{jk}\right\} \\&\quad +\sum ^{n-1}_{j=1}\sum ^n_{k=j+1}\mathfrak {I}\left\{ L_{jk}^\dag S_{jk}(I-S_{kj}S_{jk})^{-1}L_{kj}+ L_{kj}^\dag S_{kj}(I-S_{jk}S_{kj})^{-1}L_{kj}\right\} . \end{aligned}$$

With \(L_{jk}=K_{jk}x_j\), and the definition of sym(A) in the theorem, one has that

$$\begin{aligned} H_\mathrm{red}&=\frac{1}{2}\sum ^n_{j=1}x_j^T\Biggl [R_j+2\mathrm{sym}\Biggl (\sum ^n_{k=1, k\ne j}\mathfrak {I}\left\{ K_{jk}^\dag (I-S_{jk}S_{kj})^{-1}K_{jk} \right\} \Biggr )\Biggr ]x_j\\&\quad +\sum ^{n-1}_{j=1}\sum ^n_{k=j+1}x_j^T\mathfrak {I}\left\{ K_{jk}^\dag S_{jk}(I-S_{kj}S_{jk})^{-1}K_{kj}+ K_{kj}^T (I-S_{kj}^TS_{jk}^T)^{-1}S_{kj}^TK_{kj}^\sharp \right\} x_k . \end{aligned}$$

Then it follows from (32) and (34) that

$$\begin{aligned} H_\mathrm{red}&=\frac{1}{2}\sum ^n_{j=1}x_j^TR_{jj}x_j+\sum ^{n-1}_{j=1}\sum ^n_{k=j+1}x_j^T\left( R_{jk} -\mathfrak {I}\left\{ K_{jj}^TS^T_{kk\twoheadleftarrow (j+1)(j+1)}K_{kk}^\sharp \right\} \right) x_k \nonumber \\&=\frac{1}{2}x^TRx-\sum ^{n-1}_{j=1}\sum ^n_{k=j+1}x_j^T\mathfrak {I}\left\{ K_{jj}^TS^T_{kk\twoheadleftarrow (j+1)(j+1)}K_{kk}^\sharp \right\} x_k. \end{aligned}$$
(41)

With the triplet \(S_\mathrm{red}=\mathrm{diag}(S_{11}, S_{22},\ldots , S_{nn}), L_\mathrm{red}=(L_{11}^T, L_{22}^T,\ldots , L_{nn}^T)^T\) and \(H_\mathrm{red}\) of \(G_\mathrm{red}\) as determined above, one can let \(G^0_\mathrm{red}=(0, 0, H_\mathrm{red})\) and \(G^j_\mathrm{red}=(S_{jj}, L_{jj}, 0)\) for \(j\in \mathbb {N}_n\). It is obvious that according to the concatenation product rule (5) \(G_\mathrm{red}=(S_\mathrm{red}, L_\mathrm{red}, H_\mathrm{red})\) can be decomposed as

$$\begin{aligned} G_\mathrm{red}=G^0_\mathrm{red}\boxplus (G^1_\mathrm{red}\boxplus G^2_\mathrm{red}\boxplus \cdots \boxplus G^n_\mathrm{red}). \end{aligned}$$

Now, using the series product rules (8) and (25), one obtains that

$$\begin{aligned}&G^n_\mathrm{red}\vartriangleleft \cdots \vartriangleleft G^1_\mathrm{red}\\&\quad =\bigg (S_{nn\twoheadleftarrow 11}, \sum ^n_{j=1}S_{nn\twoheadleftarrow (j+1)(j+1)}L_{jj}, \ \sum ^n_{k=1}H_k\\&\qquad +\sum ^{n-1}_{j=1}\sum ^n_{k=j+1}x_j^T\mathfrak {I}\left\{ K_{jj}^TS^T_{kk\twoheadleftarrow (j+1)(j+1)}K_{kk}^\sharp \right\} x_k\bigg )\\&\quad =\bigg (S_{nn}\ldots S_{22}S_{11},\ \sum ^n_{j=1}S_{nn\twoheadleftarrow (j+1)(j+1)} S^\dag _{nn\twoheadleftarrow {(j+1)(j+1)}}K_{j}x_j,\\&\qquad \sum ^{n-1}_{j=1}\sum ^n_{k=j+1}x_j^T\mathfrak {I}\left\{ K_{jj}^TS^T_{kk\twoheadleftarrow (j+1)(j+1)}K_{kk}^\sharp \right\} x_k\bigg )\\&\quad =\bigg (S_{nn}\ldots S_{22}S_{11},\ \sum ^n_{j=1}K_{j}x_j, \ \sum ^{n-1}_{j=1}\sum ^n_{k=j+1}x_j^T\mathfrak {I}\left\{ K_{jj}^TS^T_{kk\twoheadleftarrow (j+1)(j+1)}K_{kk}^\sharp \right\} x_k\bigg )\\&\quad =\bigg (S,\ \begin{bmatrix} K_{1}&K_{2}&\ldots&K_{2} \end{bmatrix}x,\ \sum ^{n-1}_{j=1}\sum ^n_{k=j+1}x_j^T\mathfrak {I}\left\{ K_{jj}^TS^T_{kk\twoheadleftarrow (j+1)(j+1)}K_{kk}^\sharp \right\} x_k\bigg ), \end{aligned}$$

where \(H_k=0\) for \(k \in \mathbb {N}_n\) .

Then by (36) and (41) one can compute the quantum feedback network \(G_{\text {final-net}}\) constructed in the theorem as

$$\begin{aligned} G_{\text {final-net}}&=(S_{\text {final-net}}, L_{\text {final-net}}, H_{\text {final-net}})\nonumber \\&=G^0_\mathrm{red}\boxplus (G^n_\mathrm{red}\vartriangleleft \cdots \vartriangleleft G^2_\mathrm{red}\vartriangleleft G^1_\mathrm{red})\nonumber \\&=\bigg (0,\ 0,\ \frac{1}{2}x^TRx-\sum ^{n-1}_{j=1}\sum ^n_{k=j+1}x_j^T\mathfrak {I}\left\{ K_{jj}^TS^T_{kk\twoheadleftarrow (j+1)(j+1)}K_{kk}^\sharp \right\} x_k\bigg )\boxplus \nonumber \\&\ \quad \bigg (S, \ \begin{bmatrix} K_{1}&K_{2}&\ldots&K_{2} \end{bmatrix}x, \ \sum ^{n-1}_{j=1}\sum ^n_{k=j+1}x_j^T\mathfrak {I}\left\{ K_{jj}^TS^T_{kk\twoheadleftarrow (j+1)(j+1)}K_{kk}^\sharp \right\} x_k\bigg )\nonumber \\&=\left( S,\ Kx,\ \frac{1}{2}x^TRx\right) =\left( S,\ L,\ H\right) . \end{aligned}$$
(42)

It is easy to see from (42) that the triplet of \(G_{\text {final-net}}\) has

$$\begin{aligned} S_{\text {final-net}}=S,\ \ \ \ L_{\text {final-net}}=L,\ \ \ \ H_{\text {final-net}}=H, \end{aligned}$$

that is, the triplet of \(G_{\text {final-net}}\) is equal to the triplet of \(G_\mathrm{sys}\). Therefore, according to Definition 2, \(G_{\text {final-net}}\) has realized the triplet-type quantum stochastic system \(G_\mathrm{sys}\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, S., Fu, S. & Chen, Y. Network realization of triplet-type quantum stochastic systems. Quantum Inf Process 16, 34 (2017). https://doi.org/10.1007/s11128-016-1492-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-016-1492-8

Keywords

Navigation