Skip to main content
Log in

Refined entanglement concentration for electron-spin entangled cluster states with quantum-dot spins in optical microcavities

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We present a refined entanglement concentration protocol (ECP) for an arbitrary unknown less-entangled four-electron-spin cluster state by exploring the optical selection rules derived from the quantum-dot spins in one-sided optical microcavities. In our ECP, the parties obtain not only the four-electron-spin systems in the partial entanglement with two unknown parameters, but also the less-entangled two-electron-spin systems in the first step. Utilizing the above preserved systems as the resource for the second step of our ECP, the parties can obtain a standard cluster state by keeping the robust odd-parity instances with two parity-check gates. Meanwhile, the systems in the rest three instances can be used as the resource in the next round of our ECP. The success probability of our ECP is largely increased by iteration of the ECP process. Moreover, all the coefficients of our ECP are unknown for the parties without assistance of extra single electron-spin, so our ECP maybe has good applications in quantum communication network in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Liu, X.S., Long, G.L., Tong, D.M., Feng, L.: General scheme for superdense coding between multiparties. Phys. Rev. A 65, 022304 (2002)

    Article  ADS  Google Scholar 

  4. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, pp. 175–179. IEEE, New York (1984)

  5. Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bells theorem. Phys. Rev. Lett. 68, 557–559 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  8. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  9. Hu, J.Y., Yu, B., Jing, M.Y., Xiao, L.T., Jia, S.T., Qin, G.Q., Long, G.L.: Experimental quantum secure direct communication with single photons. Light Sci. Appl. 5, e16144 (2016)

    Article  Google Scholar 

  10. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channel. Phys. Rev. Lett. 76, 722–725 (1996)

    Article  ADS  Google Scholar 

  11. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046–2052 (1996)

    Article  ADS  Google Scholar 

  12. Zhao, Z., Pan, J.W., Zhan, M.S.: Practical scheme for entanglement concentration. Phys. Rev. A 64, 014301 (2001)

    Article  ADS  Google Scholar 

  13. Yamamoto, T., Koashi, M., Imoto, N.: Concentration and purification scheme for two partially entangled photon pairs. Phys. Rev. A 64, 012304 (2001)

    Article  ADS  Google Scholar 

  14. Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics. Phys. Rev. A 77, 062325 (2008)

    Article  ADS  Google Scholar 

  15. Bose, S., Vedral, V., Knight, P.L.: Purification via entanglement swapping and conserved entanglement. Phys. Rev. A 60, 194–197 (1999)

    Article  ADS  Google Scholar 

  16. Shi, B.S., Jiang, Y.K., Guo, G.C.: Optimal entanglement purification via entanglement swapping. Phys. Rev. A 62, 054301 (2000)

    Article  ADS  Google Scholar 

  17. Sheng, Y.B., Zhou, L., Zhao, S.M., Zheng, B.Y.: Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs. Phys. Rev. A 85, 012307 (2012)

    Article  ADS  Google Scholar 

  18. Ren, B.C., Du, F.F., Deng, F.G.: Hyperentanglement concentration for two-photon four-qubit systems with linear optics. Phys. Rev. A 88, 012302 (2013)

    Article  ADS  Google Scholar 

  19. Wang, C., Zhang, Y., Jin, G.S.: Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities. Phys. Rev. A 84, 032307 (2011)

    Article  ADS  Google Scholar 

  20. Wang, C.: Efficient entanglement concentration for partially entangled electrons using a quantum-dot and microcavity coupled system. Phys. Rev. A 86, 012323 (2012)

    Article  ADS  Google Scholar 

  21. Wang, C., Shen, W.W., Mi, S.C., Zhang, Y., Wang, T.J.: Concentration and distribution of entanglement based on valley qubits system in grapheme. Sci. Bull. 60, 2016–2021 (2016)

    Article  Google Scholar 

  22. Shukla, C., Banerjee, A., Pathak, A.: Protocols and quantum circuits for implementing entanglement concentration in cat state, GHZ-like state and nine families of 4-qubit entangled states. Quantum Inf. Process. 14, 2077–2099 (2015)

    Article  ADS  MATH  Google Scholar 

  23. Liu, H.J., Xia, Y., Song, J.: Efficient hyperentanglement concentration for N-particle Greenberger–Horne–Zeilinger state assisted by weak cross-Kerr nonlinearity. Quantum Inf. Process. 15, 2033–2052 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Wang, H.F., Sun, L.L., Zhang, S., Yeon, K.H.: Scheme for entanglement concentration of unknown partially entangled three-atom W states in cavity QED. Quantum Inf. Process. 11, 431–441 (2012)

    Article  MATH  Google Scholar 

  25. Sun, L.L., Wang, H.F., Zhang, S., Yeon, K.H.: Entanglement concentration of partially entangled three-photon W states with weak cross-Kerr nonlinearity. J. Opt. Soc. Am. B 29, 630–634 (2012)

    Article  ADS  Google Scholar 

  26. Liang, B.B., Hu, S., Cui, W.X., An, C.S., Xing, Y., Hu, J.S., Sun, G.Q., Jiang, X.X., Wang, H.F.: Scheme for realizing the entanglement concentration of unknown partially entangled three-photon W states assisted by a quantum dot-microcavity coupled system. Laser Phys. Lett. 11, 115202 (2014)

    Article  ADS  Google Scholar 

  27. Sheng, Y.B., Zhou, L., Zhao, S.M.: Efficient two-step entanglement concentration for arbitrary W states. Phys. Rev. A 85, 042302 (2012)

    Article  ADS  Google Scholar 

  28. Du, F.F., Deng, F.G.: Heralded entanglement concentration for photon systems with linear-optical elements. Sci. China Phys. Mech. Astron. 58, 040303 (2015)

    Google Scholar 

  29. Sheng, Y.B., Pan, J., Guo, R., Zhou, L., Wang, L.: Efficient \(N\)-particle W state concentration with different parity check gates. Sci. China Phys. Mech. Astron. 58, 060301 (2015)

    Article  Google Scholar 

  30. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188 (2001)

    Article  ADS  Google Scholar 

  31. Raussendorf, R., Browne, D.E., Briegel, H.J.: Measurement-based quantum computation on cluster states. Phys. Rev. A 68, 022312 (2003)

    Article  ADS  Google Scholar 

  32. Briegel, H.J., Raussendorf, R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86, 910 (2001)

    Article  ADS  Google Scholar 

  33. Nielsen, M.A.: Optical quantum computation using cluster states. Phys. Rev. Lett. 93, 040503 (2004)

    Article  ADS  Google Scholar 

  34. Choudhury, B.S., Dhara, A.: An entanglement concentration protocol for cluster states. Quantum Inf. Process. 12, 2577–2585 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Xu, T.T., Xiong, W., Ye, L.: Concentrating arbitrary four-photon less-entangled cluster state by single photons. Mod. Phys. Lett. B 26, 1250214 (2012)

    Article  ADS  Google Scholar 

  36. Si, B., Su, S.L., Sun, L.L., Cheng, L.Y., Wang, H.F., Zhang, S.: Efficient three-step entanglement concentration for an arbitrary four-photon cluster state. Chin. Phys. B 22, 030305 (2013)

    Article  ADS  Google Scholar 

  37. Zhao, S.Y., Liu, J., Zhou, L., Sheng, Y.B.: Two-step entanglement concentration for arbitrary electronic cluster state. Quantum Inf. Process. 12, 3633–3647 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Liu, H.J., Fan, L.L., Xia, Y., Song, J.: Efficient entanglement concentration for partially entangled cluster states with weak cross-Kerr nonlinearity. Quantum Inf. Process. 14, 2909–2928 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Wang, M.Y., Yan, F.L., Xu, J.Z.: Perfect entanglement concentration of an arbitrary four-photon polarization entangled state via quantum nondemolition detectors. Mol. Opt. Phys. B 49, 155502 (2016)

    Article  ADS  Google Scholar 

  40. Cao, C., Wang, T.J., Zhang, R., Wang, C.: Cluster state entanglement generation and concentration on nitrogen-vacancy centers in decoherence-free subspace. Laser Phys. Lett. 12, 036001 (2015)

    Article  ADS  Google Scholar 

  41. Zhou, L.: Consequent entanglement concentration of a less-entangled electronic cluster state with controlled-not gates. Chin. Phys. B 23, 050308 (2014)

    Article  Google Scholar 

  42. Zhao, J., Zheng, C.H., Shi, P., Ren, C.N., Gu, Y.J.: Generation and entanglement concentration for electron-spin entangled cluster states using charged quantum dots in optical microcavities. Opt. Commun. 322, 32–39 (2014)

    Article  ADS  Google Scholar 

  43. Sheng, Y.B., Zhao, S.Y., Liu, J., Wang, X.F., Zhou, L.: Arbitrary four-photon cluster state concentration with cross-Kerr nonlinearity. Int. J. Theor. Phys. 54, 1292–1303 (2015)

    Article  MATH  Google Scholar 

  44. Hu, C.Y., ÓBrien, J.L., Munro, W.J.: Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon. Phys. Rev. B 78, 085307 (2008)

    Article  ADS  Google Scholar 

  45. Hu, C.Y., Munro, W.J., Rarity, J.G.: Deterministic photon entangler using a charged quantum dot inside a microcavity. Phys. Rev. B 78, 125318 (2008)

    Article  ADS  Google Scholar 

  46. Wang, H.F., Zhu, A.D., Zhang, S., Yeon, K.H.: Optically controlled phase gate and teleportation of a controlled-not gate for spin qubits in a quantum-dot–microcavity coupled system. Phys. Rev. A 87, 062337 (2013)

    Article  ADS  Google Scholar 

  47. Bai, C.H., Wang, D.Y., Hu, S., Cui, W.X., Jiang, X.X., Wang, H.F.: Scheme for implementing multitarget qubit controlled-NOT gate of photons and controlled-phase gate of electron spins via quantum dot-microcavity coupled system. Quantum Inf. Process. 15, 1485–1498 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Hu, S., Cui, W.X., Wang, D.Y., Bai, C.H., Guo, Q., Wang, H.F., Zhu, A.D., Zhang, S.: Teleportation of a Toffoli gate among distant solid-state qubits with quantum dots embedded in optical microcavities. Sci. Rep. 5, 11321 (2015)

    Article  ADS  Google Scholar 

  49. Warburton, R.J., Dürr, C.S., Karrai, K., Kotthaus, J.P., Medeiros-Ribeiro, G., Petroff, P.M.: Charged excitons in self-assembled semiconductor quantum dots. Phys. Rev. Lett. 79, 5282–5285 (1997)

    Article  ADS  Google Scholar 

  50. Walls, D.F., Milburn, G.J.: Quantum Optics. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  51. Petta, J.R., Johnson, A.C., Taylor, J.M., Laird, E.A., Yacoby, A., Lukin, M.D., Marcus, C.M., Hanson, M.P., Gossard, A.C.: Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005)

    Article  ADS  Google Scholar 

  52. Berezovsky, J., Mikkelsen, M.H., Stoltz, N.G., Coldren, L.A., Awschalom, D.D.: Picosecond coherent optical manipulation of a single electron spin in a quantum dot. Science 320, 349–352 (2008)

    Article  ADS  Google Scholar 

  53. Reiserer, A., Ritter, S., Rempe, G.: Nondestructive detection of an optical photon. Science 342, 1349–1351 (2013)

    Article  ADS  Google Scholar 

  54. Oulton, R., Greilich, A., Verbin, S.Y., Cherbunin, R.V., Auer, T., Yakovlev, D.R., Bayer, M., Merkulov, I.A., Stavarache, V., Reuter, D., Wieck, A.D.: Subsecond spin relaxation times in quantum dots at zero applied magnetic field due to a strong electron-nuclear interaction. Phys. Rev. Lett. 98, 107401 (2007)

    Article  ADS  Google Scholar 

  55. Greilich, A., Shabaev, A., Yakovlev, D.R., Efros, A.L., Yugova, I.A., Reuter, D., Wieck, A.D., Bayer, M.: Nuclei-induced frequency focusing of electron spin coherence. Science 317, 1896–1899 (2007)

    Article  ADS  Google Scholar 

  56. Reilly, D.J., Taylor, J.M., Petta, J.R., Marcus, C.M., Hanson, M.P., Gossard, A.C.: Suppressing spin qubit dephasing by nuclear state preparation. Science 321, 817–821 (2008)

    Article  ADS  Google Scholar 

  57. Latta, C., Högele, A., Zhao, Y., Vamivakas, A.N., Maletinsky, P., Kroner, M., Dreiser, J., Carusotto, I., Badolato, A., Schuh, D., Wegscheider, W., Atature, M., Imamoglu, A.: Confluence of resonant laser excitation and bidirectional quantum-dot nuclear-spin polarization. Nat. Phys. 5, 758–763 (2009)

    Article  Google Scholar 

  58. Clark, S.M., Fu, K.M.C., Zhang, Q., Ladd, T.D., Stanley, C., Yamamoto, Y.: Ultrafast optical spin echo for electron spins in semiconductors. Phys. Rev. Lett. 102, 247601 (2009)

    Article  ADS  Google Scholar 

  59. Kawakami, E., Scarlino, P., Ward, D.R., Braakman, F.R., Savage, D.E., Lagally, M.G., Friesen, M., Coppersmith, S.N., Eriksson, M.A., Vandersypen, L.M.K.: Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot. Nat. Nanotech. 9, 666–670 (2014)

    Article  ADS  Google Scholar 

  60. Langbein, W., Borri, P., Woggon, U., Stavarache, V., Reuter, D., Wieck, A.D.: Radiatively limited dephasing in InAs quantum dots. Phys. Rev. B 70, 033301 (2004)

    Article  ADS  Google Scholar 

  61. Brunner, D., Gerardot, B.D., Dalgarno, P.A., Wüst, G., Karrai, K., Stoltz, N.G., Petroff, P.M., Warburton, R.J.: A coherent single-hole spin in a semiconductor. Science 325, 70–72 (2009)

    Article  ADS  Google Scholar 

  62. Hu, C.Y., Ossau, W., Yakovlev, D.R., Landwehr, G., Wojtowicz, T., Karczewski, G., Kossut, J.: Optically detected magnetic resonance of excess electrons in type-I quantum wells with a low-density electron gas. Phys. Rev. B 58, R1766–1769 (1998)

    Article  ADS  Google Scholar 

  63. Yoshie, T., Scherer, A., Hendrickson, J., Khitrova, G., Gibbs, H.M., Rupper, G., Ell, C., Shchekin, O.B., Deppe, D.G.: Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200–203 (2004)

    Article  ADS  Google Scholar 

  64. Loo, V., Lanco, L., Lemaître, A., Sagnes, I., Krebs, O., Voisin, P., Senellart, P.: Quantum dot-cavity strong-coupling regime measured through coherent reflection spectroscopy in a very high-\(Q\) micropillar. Appl. Phys. Lett. 97, 241110 (2010)

    Article  ADS  Google Scholar 

  65. Reitzenstein, S., Hofmann, C., Gorbunov, A., Strauß, M., Kwon, S.H., Schneider, C., Löffler, A., Höfling, S., Kamp, M., Forchel, A.: AlAs/GaAs micropillar cavities with quality factors exceeding 150.000. Appl. Phys. Lett. 90, 251109 (2007)

    Article  ADS  Google Scholar 

  66. Reithmaier, J.P., Sȩk, G., Löffler, A., Hofmann, C., Kuhn, S., Reitzenstein, S., Keldysh, L.V., Kulakovskii, V.D., Reinecke, T.L., Forchel, A.: Strong coupling in a single quantum dot-semiconductor microcavity system. Nature 432, 197–200 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant Nos. 11175094 and 91221205, and the National Basic Research Program of China under Grant No. 2015CB921002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui-Lu Long.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, FF., Long, GL. Refined entanglement concentration for electron-spin entangled cluster states with quantum-dot spins in optical microcavities. Quantum Inf Process 16, 26 (2017). https://doi.org/10.1007/s11128-016-1496-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-016-1496-4

Keywords

Navigation