Skip to main content
Log in

Toffoli gate and quantum correlations: a geometrical approach

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

By using a geometrical approach, we investigate the behavior of the quantum Toffoli gate in connection to quantum correlations. Special attention is paid to states with maximally mixed marginals. Finally and in the same vein, we scrutinize the Hadamard gate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Cf. [28] for a discussion of some problems with the geometric measure of discord.

  2. Or more generally, an arbitrary quantum operation \({\mathcal {E}}\).

  3. Remember that both definitions of discord yield the same family of null-discordant states.

References

  1. Aharonov, D.: A simple proof that Toffoli and Hadamard are quantum universal. arXiv:quant-ph/0301040v1 (2003)

  2. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  3. Stojanović, V.M., Fedorov, A., Wallraff, A., Bruder, C.: Quantum-control approach to realizing a Toffoli gate in circuit QED. Phys. Rev. B 85, 054504 (2012)

    Article  ADS  Google Scholar 

  4. Guo, Y., Zhao, Z., Wang, Y., Wang, P., Huang, D., Ho Lee, M.: On implementing nondestructive triplet Toffoli gate with entanglement swapping operations via the GHZ state analysis. Quantum Inf. Process 13, 2039–2047 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Aharanov, D., Kitaev, A., Nisan, N.: Quantum circuits with mixed states. 13th Annual ACM Symposium on Theory of Computation, STOC, pp. 20–30 (1998)

  6. Tarasov, V.: Quantum computer with mixed states and four-valued logic. J. Phys. A Math. Gen. 35, 5207 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Dalla Chiara, M.L., Giuntini, R., Sergioli, G.: Probability in quantum computation and in quantum computational logics. Math. Struct. Comput. Sci. 14, 1–14 (2013)

    MATH  Google Scholar 

  8. Deutsch, D.: Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A 400, 97–117 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Freytes, H., Sergioli, G.: Fuzzy approach for Toffoli gate in quantum computation with mixed states. Rep. Math. Phys. 74, 154–180 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Dakić, B., Vedral, V., Brukner, Č.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

    Article  ADS  MATH  Google Scholar 

  11. Werner, R.F.: Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40(8), 4277–4281 (1989)

    Article  ADS  Google Scholar 

  12. Feynman, R.P.: Simulating physics with computers. International Journal of Theoretical Physics 21(6/7), 467–488 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  13. Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655–1707 (2012)

    Article  ADS  Google Scholar 

  14. Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)

    Article  ADS  Google Scholar 

  15. Lanyon, B.P., Barbieri, M., Almeida, M.P., White, A.G.: Experimental quantum computing without entanglement. Phys. Rev. Lett. 101, 200501 (2008)

    Article  ADS  Google Scholar 

  16. Knill, E., Laflamme, R.: Power of one bit of quantum information. Phys. Rev. Lett. 81, 5672 (1998)

    Article  ADS  Google Scholar 

  17. Brodutch, A.: Discord and quantum computational resources. Phys. Rev. A 88, 022307 (2013)

    Article  ADS  Google Scholar 

  18. Brodutch, A., Gilchrist, A., Terno, D.R., Wood, C.J.: Quantum discord in quantum computation. J. Phys. Conf. Ser. 306, 012030 (2011)

    Article  Google Scholar 

  19. Zhang, C., Yu, S., Chen, Q., Oh, C.H.: Quantum discord of two-qubit X states. Phys. Rev. A 84, 032122 (2011)

    Article  ADS  Google Scholar 

  20. Moqadam, J.K., Portugal, R., Svaiter, N.F., de Oliveira Corrêa, G.: Analyzing the Toffoli gate in disordered circuit QED. Phys. Rev. A 87, 042324 (2013)

    Article  ADS  Google Scholar 

  21. Song, L.-C., Xia, Y., Song, J.: Noise resistance of Toffoli gate in an array of coupled cavities. J. Mod. Opt. 61(16), 1290–1297 (2014)

    Article  ADS  Google Scholar 

  22. Singh, H., Chakraborty, T., Panigrahi, P.K., Mitra, C.: Experimental estimation of discord in an antiferromagnetic Heisenberg compound \(\text{ Cu }(\text{ NO }_{3})_{2} \cdot 2.5\,\text{ H }_{2}\text{ O }\). Quantum Inf. Process. 14, 951–961 (2015)

    Article  ADS  Google Scholar 

  23. Hayashi, M.: Quantum Information. Springer, Berlin (2006)

    MATH  Google Scholar 

  24. Datta, A.: A condition for the nullity of quantum discord. arXiv preprint, arXiv:1003.5256 (2010)

  25. Ferraro, A., Aolita, L., Cavalcanti, D., Cucchietti, F.M., Acin, A.: Almost all quantum states have nonclassical correlations. Phys. Rev. A 81, 052318 (2010)

    Article  ADS  Google Scholar 

  26. Luo, S., Fu, S.: Geometric measure of quantum discord. Phys. Rev. A 82, 034302 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Wei, H.-R., Ren, B.-C., Deng, F.-G.: Geometric measure of quantum discord for a two-parameter class of states in a qubit–qutrit system under various dissipative channels. Quantum Inf. Process. 12, 1109–1124 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Piani, M.: Problem with geometric discord. Phys. Rev. A 86, 034101 (2012)

    Article  ADS  Google Scholar 

  29. Toffoli, T.: Reversible computing. In: Proceedings of the 7th Colloquium on Automata, Languages and Programming. Springer, London, pp. 632–644 (1980)

  30. Freytes, H., Domenech, G.: Quantum computational logic with mixed states. Math. Logic Q. 59, 27–50 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, London (1998)

    Book  MATH  Google Scholar 

  32. Goldblatt, R.: Topoi, The Categorial Analysis of Logic. Dover Publications Inc., Mineola (2006)

    MATH  Google Scholar 

  33. Husemoller, D.: Fibre bundles, 3rd edn. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  34. Kraus, K.: States, Effects and Operations. Springer, Berlin (1983)

    MATH  Google Scholar 

  35. Freytes, H., Sergioli, G., Aricó, A.: Representing continuous t-norms in quantum computation with mixed states. J. Phys. A 43(46), 465306 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Cereceda, J.: Three-particle entanglement versus three-particle nonlocality. Phys. Rev. A 66, 024102 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  37. Luo, S., Fu, S.: Measurement-induced nonlocality. Phys. Rev. Lett. 106, 120401 (2011)

    Article  ADS  MATH  Google Scholar 

  38. Ming-Liang, H., Fan, H.: Measurement-induced nonlocality based on trace norm. New J. Phys. 17, 033004 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Holik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holik, F., Sergioli, G., Freytes, H. et al. Toffoli gate and quantum correlations: a geometrical approach. Quantum Inf Process 16, 55 (2017). https://doi.org/10.1007/s11128-016-1509-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-016-1509-3

Keywords

Navigation