Skip to main content

Advertisement

Log in

Entanglement of two hybrid optomechanical cavities composed of BEC atoms under Bell detection

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, firstly, we consider bipartite entanglement between each part of an optomechanical cavity composed of one-dimensional Bose–Einstein condensate (BEC). We investigate atomic collision on the behaviour of the BEC in the week photon–atom coupling constant and use Bogoliubov approximation for the BEC. Secondly under above condition, we propose a scheme for entanglement swapping protocol which involves tripartite systems. In our investigation, we consider a scenario where BECs, moving mirrors, and optical cavity modes are given in a Gaussian state with a covariance matrix. By applying the Bell measurement to the output optical field modes, we show how the remote entanglement between two BECs, two moving mirrors, and BEC-mirror modes in different optomechanical cavity can be generated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Braunstein, S.L., van Loock, P.: Quantum information with continuous variables. Rev. Mod. Phys. 77, 513 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Weedbrook, C., Pirandola, S., García-Patrón, R., Cerf, N.J., Ralph, T.C., Shapiro, J.H., Lloyd, S.: Gaussian quantum information. Rev. Mod. Phys 84, 621 (2012)

    Article  ADS  Google Scholar 

  4. Jaksch, D., Briegel, H.-J., Cirac, J.I., Gardiner, C.W., Zoller, P.: Entanglement of Atoms via Cold Controlled Collisions. Phys. Rev. Lett. 82, 1975 (1999)

    Article  ADS  Google Scholar 

  5. Turchette, Q.A., Wood, C.S., King, B.E., Myatt, C.J., Leibfried, D., Itano, W.M., Monroe, C., Wineland, D.J.: Deterministic Entanglement of Two Trapped Ions. Phys. Rev. Lett. 81, 3631 (1998)

    Article  ADS  Google Scholar 

  6. Zheng, S.-B., Guo, G.-C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 85, 2392 (2000)

    Article  ADS  Google Scholar 

  7. Mendona, P.E., Marchiolli, M.A., Galetti, D.: Entanglement universality of two-qubit X-states. Ann. Phys. 351, 79 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  8. Banerjee, S., Ravishankar, V., Srikanth, R.: Dynamics of entanglement in two-qubit open system interacting with a squeezed thermal bath via dissipative interaction. Ann. Phys. 325, 816 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Pan, J.-W., Bouwmeester, D., Weinfurter, H., Zeilinger, A.: Experimental Entanglement Swapping: Entangling Photons That Never Interacted. Phys. Rev. Lett. 80, 3891 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. de Lima Bernardo, B.: How a single photon can mediate entanglement between two others. Ann. Phys. 373, 80 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  11. Haq, S.U., Khalique, A.: Long distance cavity entanglement by entanglement swapping using atomic momenta. Opt. Commun. 334, 290 (2015)

    Article  ADS  Google Scholar 

  12. Abdi, M., Pirandola, S., Tombesi, P., Vitali, D.: Continuous-variable-entanglement swapping and its local certification: entangling distant mechanical modes. Phys. Rev. A 89, 022331 (2014)

    Article  ADS  Google Scholar 

  13. Abdi, M., Pirandola, S., Tombesi, P., Vitali, D.: Entanglement swapping with local certification: application to remote micromechanical resonators. Phys. Rev. Lett. 109, 143601 (2012)

    Article  ADS  Google Scholar 

  14. Jia, X., Su, X., Pan, Q., Gao, J., Xie, C., Peng, K.: Experimental demonstration of unconditional entanglement swapping for continuous variables. Phys. Rev. Lett. 93, 250503 (2004)

    Article  ADS  Google Scholar 

  15. Takei, N., Yonezawa, H., Aoki, T., Furusawa, A.: High-fidelity teleportation beyond the no-cloning limit and entanglement swapping for continuous variables. Phys. Rev. Lett. 94, 220502 (2005)

    Article  ADS  Google Scholar 

  16. Dalafi, A., Naderi, M.H., Soltanolkotabi, M., Barzan- jeh, S.: Nonlinear effects of atomic collisions on the optomechanical properties of a Bose-Einstein condensate in an optical cavity. Phys. Rev. A 87, 013417 (2013)

    Article  ADS  Google Scholar 

  17. Maschler, C., Ritsch, H.: Quantum motion of laser-driven atoms in a cavity field. Opt. Commun. 243, 145 (2004)

    Article  ADS  Google Scholar 

  18. Asbóth, J.K., Domokos, P., Ritsch, H., Vukics, A.: Self-organization of atoms in a cavity field: threshold, bistability, and scaling laws. Phys. Rev. A 72, 053417 (2005)

    Article  ADS  Google Scholar 

  19. Maschler, C., Ritsch, H.: Cold atom dynamics in a quantum optical lattice potential. Phys. Rev. Lett. 95, 260401 (2005)

    Article  ADS  Google Scholar 

  20. Nagy, D., Domokos, P., Vukics, A., Ritsch, H.: Nonlinear quantum dynamics of two BEC modes dispersively coupled by an optical cavity. Eur. Phys. J. D 55, 659 (2009)

    Article  ADS  Google Scholar 

  21. Dalafi, A., Naderi, M.H., Soltanolkotabi, M., Barzan- jeh, S.: Controllability of optical bistability, cooling and entanglement in hybrid cavity optomechanical systems by nonlinear atom–atom interaction. J. Phys. B: At. Mol. Opt. Phys 46, 235502 (2013)

    Article  ADS  Google Scholar 

  22. Drummond, P., Gardiner, C.: Generalised P-representations in quantum optics. J. Phys. A. Math. Gen. 13, 2353 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  23. Pinard, M., Hadjar, Y., Heidmann, A.: Effective mass in quantum effects of radiation pressure. Eur. Phys. J. D 7, 107 (1999)

    ADS  Google Scholar 

  24. Law, C.: Interaction between a moving mirror and radiation pressure: a Hamiltonian formulation. Phys. Rev. A 51, 2537 (1995)

    Article  ADS  Google Scholar 

  25. Benguria, R., Kac, M.: Quantum langevin equation. Phys. Rev. Lett. 46, 1 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  26. Dalafi, A., Naderi, M., Soltanolkotabi, M., Barzanjeh, S.: Nonlinear effects of atomic collisions on the optomechanical properties of a Bose-Einstein condensate in an optical cavity. Phys. Rev. A 87, 013417 (2013)

    Article  ADS  Google Scholar 

  27. Zhang, K., Chen, W., Bhattacharya, M., Meystre, P.: Hamiltonian chaos in a coupled BEC-optomechanical-cavity system. Phys. Rev. A 81, 013802 (2010)

    Article  ADS  Google Scholar 

  28. Gradshteyn, I., Ryzhik, I.: Tables of Integrals, Series and Products, Corrected and, Enlarged edn. Academic Press, New York (1980)

    MATH  Google Scholar 

  29. Genes, C., Mari, A., Tombesi, P., Vitali, D.: Robust entanglement of a micromechanical resonator with output optical fields. Phys. Rev. A 78, 032316 (2008)

    Article  ADS  Google Scholar 

  30. Barzanjeh, S., Pirandola, S., Weedbrook, C.: Continuous-variable dense coding by optomechanical cavities. Phys. Rev. A 88, 042331 (2013)

    Article  ADS  Google Scholar 

  31. Eghbali-Arani, M., Yavari, H., Shahzamanian, M., Giovannetti, V., Barzanjeh, S.: Generating quantum discord between two distant Bose–Einstein condensates with Bell-like detection. JOSA B 32, 798 (2015)

  32. Spedalieri, G., Ottaviani, C., Pirandola, S.: Covariance matrices under Bell-like detections. Open Syst. Inf. Dyn. 20, 1350011 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the office of graduate studies of the University of Kashan, and University of Hormozgan for their support. This work was supported by Council of University of Kashan by Grant Agreement No. 572801/4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Eghbali-Arani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eghbali-Arani, M., Ameri, V. Entanglement of two hybrid optomechanical cavities composed of BEC atoms under Bell detection . Quantum Inf Process 16, 47 (2017). https://doi.org/10.1007/s11128-016-1511-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-016-1511-9

Keywords