Abstract
We present a scheme to implement Bell states measurement for an arbitrary number of photons by using robust continuous variable coherent modes, called as quantum communication bus (qubus) and weak cross-Kerr nonlinearities. Remarkably, the success probability of our scheme is close to unity, and our scheme does not require any ancillary resource entanglement. Our scheme is likely to yield versatile applications for quantum computation and quantum teleportation.



Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Barenco, A., Dutch, D., Ekert, A., Jozsa, R.: Conditional quantum dynamics and logic gates. Phys. Rev. Lett. 74, 4083 (1995)
Bennett, C.H., Brassard, G., Cre’peau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)
Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature (London) 390, 575 (1997)
Nielsen, M.A.: Optical quantum computation using cluster states. Phys. Rev. Lett. 93, 040503 (2004)
Browne, D.E., Rudolph, T.: Resource-efficient linear optical quantum computation. Phys. Rev. Lett. 95, 010501 (2005)
Kieling, K., Rudolph, T., Eisert, J.: Percolation, renormalization, and quantum computing with nondeterministic gates. Phys. Rev. Lett. 99, 130501 (2007)
Kieling, K., Eisert, J.: Quantum and Semi-Classical Percolation and Breakdown in Disordered Solids. Lecture Notes in Physics, vol. 762, pp. 287–319. Springer, Berlin (2008)
Kok, P., Munro, W.J., Nemoto, K., Ralph, T.C., Dowling, J.P., Milburn, G.J.: Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135 (2007)
Ralph, T.C., Pryde, G.J.: Chapter 4—optical quantum computation. Prog. Opt. 54, 209 (2010)
Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature (London) 409, 46 (2001)
Lütkenhaus, N., Calsamiglia, J., Suominen, K.A.: Bell measurements for teleportation. Phys. Rev. A 59, 3295 (1999)
Calsamiglia, J., Lütkenhaus, N.: Maximum efficiency of a linear-optical Bell-state analyzer. Appl. Phys. B 72, 67 (2001)
Grice, W.P.: Arbitrarily complete Bell-state measurement using only linear optical elements. Phys. Rev. A 84, 042331 (2011)
Ewert, F., van Loock, P.: Efficient Bell measurement with passive linear optics and unentangled Ancillae. Phys. Rev. Lett. 113, 140403 (2014)
Zaidi, H.A., van Loock, P.: Beating the one-half limit of Ancilla-free linear optics Bell measurements. Phys. Rev. Lett. 110, 260501 (2013)
Jeong, H., Kim, M.S., Lee, J.: Quantum-information processing for a coherent superposition state via a mixed entangled coherent channel. Phys. Rev. A 64, 052308 (2001)
Jeong, H., Kim, M.S.: Efficient quantum computation using coherent states. Phys. Rev. A 65, 042305 (2002)
Lee, S.W., Jeong, H.: Near-deterministic quantum teleportation and resource-efficient quantum computation using linear optics and hybrid qubits. Phys. Rev. A 87, 022326 (2013)
Lee, S.W., Jeong, H.: In: Proceedings of the First International Workshop on Entangled Coherent States and Its Application to Quantum Information Science, pp. 41–46. Tamagawa University, Tokyo (2012)
Seung, W.L., Kimin, P., Timothy, C.R., Hyunseok, J.: Nearly deterministic Bell measurement with multiphoton entanglement for efficient quantum-information processing. Phys. Rev. A 92, 052324 (2015)
Seung, W.L., Kimin, P., Timothy, C.R., Hyunseok, J.: Nearly deterministic Bell measurement for multiphoton qubits and its application to quantum information processing. Phys. Rev. Lett. 114, 113603 (2015)
Barrett, S.D., Kok, P., Nemoto, K., Beausoleil, R.G., Munro, W.J., Spiller, T.P.: Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities. Phys. Rev. A 71, 060302 (R) (2005)
Zhou, J., Yang, M., Lu, Y., Cao, Z.L.: Nearly deterministic teleportation of a photonic qubit with weak cross-Kerr nonlinearities. Chin. Phys. Lett. 26(10), 100301 (2009)
Sheng, Y.B., Deng, F.G., Long, G.L.: Complete hyperentangled-Bell-state analysis for quantum communication. Phys. Rev. A 82, 032318 (2010)
Guo, Q., Bai, J., Cheng, L.Y., Shao, X.Q., Wang, H.F., Zhang, S.: Simplified optical quantum-information processing via weak cross-Kerr nonlinearities. Phys. Rev. A 83, 054303 (2011)
Munro, W.J., Nemoto, K., Spiller, T.P.: Weak nonlinearities: a new route to optical quantum computation. New J. Phys. 7, 137 (2005)
He, B., Nadeem, M., Bergou, J.A.A.: Scheme for generating coherent-state superpositions with realistic cross-Kerr nonlinearity. Phys. Rev. A 79, 035802 (2009)
Imoto, N., Haus, H.A., Yamamoto, Y.: Quantum nondemolition measurement of the photon number via the optical Kerr effect. Phys. Rev. A 32, 2287–2292 (1985)
Louis, S.G.R., Nemoto, K., Munro, W.J., Spiller, T.P.: The efficiencies of generating cluster states with weak nonlinearities. New J. Phys. 9, 193 (2007)
Zhao, C.R., Ye, L.: Robust scheme for the preparation of symmetric Dicke states with coherence state via cross-Kerr nonlinearity. Opt. Commun. 284, 541–544 (2011)
Li, X.Y., Voss, P.L., Sharping, J.E., Kumar, P.: Optical-Fiber source of polarization-entangled photons in the 1550 nm telecom band. Phys. Rev. Lett. 94, 053601 (2005)
Munro, W.J., Nemoto, K., Beausoleil, R.G., Spiller, T.P.: High-efficiency quantum-nondemolition single-photon-number-resolving detector. Phys. Rev. A 71, 033819 (2005)
Harris, S.E., Hau, L.V.: Nonlinear optics at low light levels. Phys. Rev. Lett. 82, 4611 (1999)
Braje, D.A., Balić, V., Yin, G.Y., Harris, S.E.: Low-light-level nonlinear optics with slow light. Phys. Rev. A 68, 041801 (R) (2003)
Metz, J., Trupke, M., Beige, A.: Robust entanglement through macroscopic quantum jumps. Phys. Rev. Lett. 97, 040503 (2006)
Turchette, Q.A., Hood, C.J., Lange, W., Mabuchi, H., Kimble, H.J.: Measurement of conditional phase shifts for quantum logic. Phys. Rev. Lett. 75, 4710 (1995)
Bachor, H., Ralph, T.C.: A Guide to Experiments in Quantum Optics. Wiley, Weinheim (2004)
Zhu, M.Z., Yin, X.G.: Highly efficient optical Fredkin gate with weak nonlinearities and classical information feed-forward. J. Opt. Soc. Am. B 30, 355–361 (2013)
Acknowledgements
This work was supported by the National Science Foundation of China under Grant Nos. 11575001, 61275119 and 61601002, Anhui Provincial Natural Science Foundation (Grant No. 1508085QF139) and also by the Natural Science Research Project of Education Department of Anhui Province of China under Grant No. KJ2013A205.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wang, JM., Zhu, Mz., Wang, D. et al. Nearly deterministic Bell measurement using quantum communication bus. Quantum Inf Process 16, 63 (2017). https://doi.org/10.1007/s11128-017-1522-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-017-1522-1