Abstract
The effects of temperature and linear coupling constant on the lower bound of the geometric discord and negativity of a qutrit–qutrit system in Heisenberg model with (and without) parallel and antiparallel external magnetic fields have been investigated. We show that the lower bound of the geometric discord and negativity are about zero for negative linear coupling constant in parallel magnetic fields, while they are nonzero in the finite antiparallel magnetic fields. For negative linear coupling constant, as temperature increases, both measures become zero faster than in the case of positive linear coupling constant in antiparallel magnetic fields.






We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)
Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A 34, 6899 (2001)
Modi, K., Cable, H., Williamson, M., Vedral, V.: Quantum correlations in mixed-state metrology. Phys. Rev. X 1, 021022 (2011)
Girolami, D., Tufarelli, T., Adesso, G.: Characterizing nonclassical correlations via local quantum uncertainty. Phys. Rev. Lett. 110, 240402 (2013)
Luo, S.: Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A 77, 022301 (2008)
Luo, S., Fu, S.: Geometric measure of quantum discord. Phys. Rev. A 82, 034302 (2010)
Batle, J., Plastino, A., Plastino, A.R., Casas, M.: Discord-entanglement in interplay in thermodynamic limit: the XY-model. J. Quantum Inform. 11, 1350003 (2013)
Divyamani, B.G.: Thermal entanglement in a two-qubit ising chain subjected to Dzyaloshinsky–Moriya interaction. Chin. Phys. Lett 30, 120301 (2013)
Batle, J., Abdel-Aty, M.: Role of quantum discord and entanglement in an infinite spin chain. Quantum Inf. Rev. 2, 9 (2014)
Werlang, T., Rigolin, G.: Thermal and magnetic quantum discord in Heisenberg models. Phys. Rev. A 81, 044101 (2010)
Hassan, A.S.M., Lari, B., Joag, P.S.: Thermal quantum and classical correlations in a two-qubit XX model in a nonuniform external magnetic field. J. Phys. A Math. Theor. 43, 485302 (2010)
Soltani, M.R., Mahdavifar, S., Mahmoudi, M.: Entanglement in a two-spin system with long-range interactions. Chin. Phys. B 25, 087501 (2016)
Zhang, G.F., Li, S.S., Liang, J.Q.: Thermal entanglement in Spin-1 biparticle system. Opt. Commun. 245, 457 (2005)
Qin, M., Tao, Y., Hu, M., Tian, D.: Entanglement in spin-1 Heisenberg XY chain. Sci. China Ser. G-Phys. Mech. Astron. 51, 817 (2008)
Zhang, G.F., Li, S.S.: The effects of nonlinear couplings and external magnetic field on the thermal entanglement in a two-spin-qutrit system. Opt. Commun. 260, 347 (2006)
San Ma, X.: Thermal entanglement of a two-qutrit XX spin chain with Dzialoshinski–Moriya interaction. Opt. Commun. 281, 484 (2008)
Akyz, C., Aydner, E., Mstecaplolu, E.: Thermal entanglement of a two-qutrit Ising system with Dzialoshinski–Moriya interaction. Opt. Commun. 281, 5271 (2008)
Sargolzahi, I., Mirafzali, S.Y., Sarbishaei, M.: Thermal entanglement in a two-qutrit system with nonlinear coupling under nonuniform external magnetic field. Int. J. Quantum Inf. 6, 867 (2008)
Jaghouri, H., Sarbishaei, M., Javidan, K.: Evolution of entropy in different types of non-Markovian three-level systems: single reservoir vs. two independent reservoirs. Pramana 86, 997 (2016)
Li, G., Liu, Y., Tang, H., Yin, X., Zhang, Z.: Analytic expression of quantum correlations in qutrit Werner states undergoing local and nonlocal unitary operations. Quantum Inf. Process. 14, 559 (2015)
Hou, X.W., Lei, X.F., Chen, B.: Thermal quantum and classical correlations in a two-qutrit system. Eur. Phys. J. D 67, 1 (2013)
Li, X.J., Ji, H.H., Hou, X.W.: Thermal discord and negativity in a two-spin-qutrit system under different magnetic fields. Int. J. Quantum Inf. 11, 1350070 (2013)
Yuan, Y.L., Hou, X.W.: Thermal geometric discords in a two-qutrit system. Int. J. Quantum Inf. 14, 1650016 (2016)
Yan, X.Q., Liu, G.H., Chee, J.: Sudden change in quantum discord accompanying the transition from bound to free entanglement. Phys. Rev. A 87, 022340 (2013)
Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)
Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)
Daki, B., Vedral, V., Brukner, Č.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)
Luo, S., Fu, S.: Geometric measure of quantum discord. Phys. Rev. A 82, 034302 (2010)
Jaksch, D., Bruder, C., Cirac, J.I., Gardiner, C.W., Zoller, P.: Cold bosonic atoms in optical lattices. Phys. Rev. Lett. 81, 3108 (1998)
Yip, S.K.: Dimer state of spin-1 bosons in an optical lattice. Phys. Rev. Lett. 90, 250402 (2003)
Scarola, V.W., Sarma, S.D.: Quantum phases of the extended Bose–Hubbard Hamiltonian: possibility of a supersolid state of cold atoms in optical lattices. Phys. Rev. Lett. 95, 033003 (2005)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Jaghouri, H., Sarbishaei, M. & Javidan, K. Thermal entanglement and lower bound of the geometric discord for a two-qutrit system with linear coupling and nonuniform external magnetic field. Quantum Inf Process 16, 124 (2017). https://doi.org/10.1007/s11128-017-1551-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-017-1551-9