Abstract
We constructed a class of non-maximally entangled mixed states (Adhikari et al. in Quantum Inf Comput 10:0398, 2010) and extensively studied their entanglement properties and also their usefulness as teleportation channels. In this article, we have revisited our constructed state and have studied it from three different perspectives. Since every entangled state is associated with a witness operator, we have found a suitable entanglement as well as teleportation witness operator for our non-maximally entangled mixed states. We considered the noisy channel’s effects on our constructed states to see how much it affects the states’ capacities as teleportation channels. For this purpose, we have mainly focussed on amplitude damping channel. A comparative study on concurrence and quantum discord of our constructed state of Adhikari et al. (2010) has also been carried out here.




Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Adhikari, S., Majumdar, A.S., Roy, S., Ghosh, B., Nayak, N.: Teleportation via maximally and non-maximally entangled mixed states. Quantum Inf. Comput. 10, 0398 (2010)
Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)
Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)
Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)
Bennett, C.H., Brassard, G.: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing Bangalore, India. IEEE, New York, p. 175 (1984)
Bennett, C.H., Brassard, G., Mermin, N.: Quantum cryptography without Bells theorem. Phys. Rev. Lett. 68, 557 (1992)
Werner, R.F.: Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden variable model. Phys. Rev. A 40, 4277 (1989)
Lee, J., Kim, M.S.: Entanglement teleportation via Werner states. Phys. Rev. Lett. 84, 4236 (2000)
Munro, W.J., James, D.F.V., White, A.G., Kwiat, P.G.: Maximizing the entanglement of two mixed qubits. Phys. Rev. A. 64, 030302 (2001)
Hiroshima, T., Ishizaka, S.: Local and nonlocal properties of Werner states. Phys. Rev. A 62, 044302 (2000)
Greenberger, D.M., Horne, M.A., Zeilinger, A.: Bell’s Theorem, Quantum Theory and Conceptions of the Universe. In: Kafatos, M. (ed.), Kluwer, Dordrecht, p. 69 (1989)
Greenberger, D.M., Horne, M.A., Zeilinger, A.: Bells theorem without inequalities. Am. J. Phys. 58, 1131 (1990)
Zeilinger, A., Horne, M.A., Greenberger, D.M.: NASA Conference Publication Code NTT Washington, p. 3135 (1997)
Adhikari, S., Majumdar, A.S., Home, D., Pan, A.K., Joshi, P.: Quantum teleportation using non-orthogonal entangled channels. Phys. Scr. 85, 045001 (2012)
Eibl, M., Kiesel, N., Bourennane, M., Kurtsiefer, C., Weinfurter, H.: Experimental realization of a three-qubit entangled W state. Phys. Rev. Lett. 92, 077901 (2004)
Lu, H., Chen, L.-K., Liu, C., Xu, P., Yao, X.-C., Li, L., Liu, N.-L., Zhao, B., Chen, Y.-A., Pan, J.-W.: Experimental realization of a concatenated Greenberger–Horne–Zeilinger state for macroscopic quantum superpositions. Nat. Photonics 8, 364 (2014)
Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)
Yu, T., Eberly, J.H.: Quantum open system theory: bipartite aspects. Phys. Rev. Lett. 97, 140403 (2006)
Bose, S., Knight, P.L., Plenio, M.B., Vedral, V.: Proposal for teleportation of an atomic state via cavity decay. Phys. Rev. Lett. 83, 5158 (1999)
Cirelson, B.S.: Quantum generalizations of Bells inequality. Lett. Math. Phys. 4, 93 (1980)
Poh, H.S., Joshi, S.K., Cere, A., Cabello, A., Kurtsiefer, C.: Approaching Tsirelson’s bound in a photon pair experiment. Phys. Rev. Lett. 115, 180408 (2015)
Ishizaka, S., Hiroshima, T.: Maximally entangled mixed states under nonlocal unitary operations in two qubits. Phys. Rev. A 62, 022310 (2000)
Guhne, O., Toth, G.: Entanglement detection. Phys. Rep. 1, 474 (2009)
Ganguly, N., Adhikari, S., Majumdar, A.S., Chatterjee, J.: Entanglement witness operator for quantum teleportation. Phys. Rev. Lett. 107, 270501 (2011)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Inforation. Cambridge University Press, 10th anniversary edition published, ISBN:978-1-107-00217-3 (2010)
Kraus, K.: States, effects and operations. In: Bonn, A. et al. (eds.) Lectures in Mathematical Physics. Springer, Berlin, ISBN: 3-540-12732-1 (1983)
Bru\(\beta \), B., Machhiavello, C.: On the entanglement structure in quantum cloning. Found. Phys. 33, 1617 (2003)
Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)
Sarandy, M.S.: Classical correlation and quantum discord in critical systems. Phy. Rev. A. 80, 022108 (2009)
Wang, C.-Z., Li, C.-X., Nie, L.-Y., Li, J.-F.: Classical correlation and quantum discord mediated by cavity in two coupled qubits. J. Phys. B At. Mol. Opt. Phys. 44, 015503 (2011)
Guo, Y.-n, Fang, M.-f, Wang, G.-y, Zeng, K.: Generation and Protection of Steady-State Quantum Correlations Due to Quantum Channels with Memory. arXiv:1603.06676 [quant-ph] (2016)
Ali, M., Rau, A.R.P., Alber, G.: Quantum discord for two-qubit X states. Phys. Rev. A. 81, 042105 (2010)
Huang, Y.: Quantum discord for two-qubit X states: analytical formula with very small worst-case error. Phys. Rev. A. 88, 014302 (2013); Private communication with Dr. Yiechen Huang
Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)
Ghosh, B., Majumdar, A.S., Nayak, N.: Environment assisted entanglement enhancement. Phys. Rev. A. 74, 052315 (2006)
Ghosh, B., Majumdar, A.S., Nayak, N.: Effects of cavity-field statistics in atomic entanglement in the Jaynes–Cumming model. Int. J. Quantum Inf. 5, 169 (2007)
Datta, A., Ghosh, B., Majumdar, A.S., Nayak, N.: Information transfer through a one-atom micromaser. Euro. Phys. Lett. 67, 934 (2004)
Acknowledgements
The authors S. Roy and B. Ghosh acknowledge co-authors from their earlier paper of Ref. [1]. The authors are also grateful to Dr. Y. Huang of Institute for Quantum Information and Matter, California Institute of Technology for his valuable comments, through private communication, on quantum discord. The authors are also acknowledge Dr. Md. Manirul Ali of Physics division of National Center for Theoretical Sciences, Hsinchu, Taiwan.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Roy, S., Ghosh, B. A revisit to non-maximally entangled mixed states: teleportation witness, noisy channel and discord. Quantum Inf Process 16, 108 (2017). https://doi.org/10.1007/s11128-017-1557-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-017-1557-3