Abstract
Employing polarization modes of a photon, we propose two theoretical proposals to exhibit the wave–particle duality of the photon with the assistance of weak cross-Kerr nonlinearities. The first proposal is a classical controlled delayed-choice experiment (that is, Wheeler’s delayed-choice experiment), where we can observe selectively wave property or particle property of the photon relying on the experimenter’s selection, whereas the second proposal is a quantum controlled delayed-choice experiment, by which the mixture phenomenon of a wave and a particle will be exhibited. Both of them can be realized with near-unity probability and embody the charming characteristics of quantum mechanics. The employment of the mature techniques and simple operations (e.g., Homodyne measurement, classical feed forward, and single-photon transformations) provides the feasibility of the delayed-choice experiment proposals presented here.



Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bohr, N.: The quantum postulate and the recent development of atomic theory. Nature 121(3050), 580–590 (1928)
Bohr, N.: Quantum Theory and Measurement, pp. 9–49. Princeton University Press, Princeton (1984)
Wheeler, J.A.: The Past and the Delayed-Choice Double-Slit Experiment. Academic Press, New York (1978)
Wheeler, J.A.: Quantum Theory and Measurement, pp. 182–213. Princeton University Press, Princeton (1984)
Zhu, X., Fang, X., Peng, X., Feng, M., Gao, K., Fei, D.: Experimental testing of complementarity for ensemble-averaged spin states. J. Phys. B 34(22), 4349–4357 (2001)
Soumya Singha, R., Shukla, A., Mahesh, T.S.: NMR implementation of a quantum delayed-choice experiment. Phys. Rev. A 85(2), 022109 (2012)
Xin, T., Li, H., Wang, B.-X., Long, G.-L.: Realization of an entanglement-assisted quantum delayed-choice experiment. Phys. Rev. A 92(2), 022126 (2015)
Schmid, K., Becker, H., Dultz, W., Martienssen, W., Kempe, M., Schmitzer, H.: Interferometric optical path measurement of a glass wedge with single photons and biphotons. Opt. Lett. 32(15), 2257–2259 (2007)
Ionicioiu, R., Terno, D.: Proposal for a quantum delayed-choice experiment. Phys. Rev. Lett. 107(23), 230406 (2011)
Tang, J.-S., Li, Y.-L., Xu, X.-Y., Xiang, G.-Y., Li, C.-F., Guo, G.-C.: Realization of quantum Wheeler’s delayed-choice experiment. Nat. Photon. 6(9), 602–606 (2012)
Guo, Q., Cheng, L.-Y., Wang, H.-F., Zhang, S.: Simple implementation of quantum delayed-choice experiment using conventional linear optical elements, pp. 1–10. ArXiv, Preprint (2013)
Lee, J.-C., Lim, H.-T., Hong, K.-H., Jeong, Y.-C., Kim, M.S., Kim, Y.: Experimental demonstration of delayed-choice decoherence suppression. Nat. Commun. 5, 4522 (2014)
Jia, A.-A., Huang, J.-H., Zhang, T.-C., Zhu, S.-Y.: Influence of losses on the wave-particle duality. Phys. Rev. A 89(4), 042103 (2014)
Ionicioiu, R., Jennewein, T., Mann, R.B., Terno, D.R.: Is wave-particle objectivity compatible with determinism and locality? Nat. Commun. 5, 3997 (2014)
Long, G.-L., Qin, W., Yang, Z., Li, J.-L.: Realistic Interpretation of Quantum Mechanics and Encounter-Delayed-Choice Experiment. Arxiv Preprints, pp. 1–7 (2014)
Sun, J., Sun, Y.-N., Li, C.-F., Guo, G.-C.: On delay of the delayed choice experiment. Chin. Phys. Lett. 32(9), 090302 (2015)
de Almeida, N.G., Avelar, A.T., Cardoso, W.B.: A proposal to implement a quantum delayed choice experiment assisted by cavity QED. Phys. Lett. A 378(18–19), 1254–1257 (2014)
Manning, A.G., Khakimov, R.I., Dall, R.G., Truscott, A.G.: Wheeler’s delayed-choice gedanken experiment with a single atom. Nat. Phys. 11(7), 539–542 (2015)
Zheng, S.-B., Zhong, Y.-P., Kai, X., Wang, Q.-J., Wang, H., Shen, L.-T., Yang, C.-P., Martinis, J.M., Cleland, A.N., Han, S.-Y.: Quantum delayed-choice experiment with a beam splitter in a quantum superposition. Phys. Rev. Lett. 115(26), 260403 (2015)
Jacques, V., Wu, E., Grosshans, F., Treussart, F., Grangier, P., Aspect, A., Roch, J.-F.: Experimental realization of Wheeler’s delayed-choice Gedanken experiment. Science 315(5814), 966–968 (2007)
Jacques, V., Wu, E., Grosshans, F., Treussart, F., Grangier, P., Aspect, A., Roch, J.-F.: Delayed-choice test of quantum complementarity with interfering single photons. Phys. Rev. Lett. 100(22), 220402 (2008)
Gardiner, C.W., Zoller, P.: Quantum Noise. Springer Press, Berlin (2000)
Nemoto, K., Munro, W.J.: Nearly deterministic linear optical Controlled-NOT gate. Phys. Rev. Lett. 93(25), 250502 (2004)
Lin, Q., Li, J.: Quantum control gates with weak cross-Kerr nonlinearity. Phys. Rev. A 79(2), 022301 (2009)
Simon, Marvin K.: Probability Distributions Involving Gaussian Random Variables, A Handbook for Engineers. Scientists and Mathematicians. Springer Press, New York (2006)
Siomau, M., Kamli, A.A., Moiseev, S.A., Sanders, B.C.: Entanglement creation with negative index metamaterials. Phys. Rev. A 85(5), 050303(R) (2012)
Paik, H., Schuster, D.I., Bishop, L.S., Kirchmair, G., Catelani, G., Sears, A.P., Johnson, B.R., Reagor, M.J., Frunzio, L., Glazman, L.I., Girvin, S.M., Devoret, M.H., Schoelkopf, R.J.: Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. Phys. Rev. Lett. 107(24), 240501 (2011)
Hoi, I.-C., Kockum, A.F., Palomaki, T., Stace, T.M., Fan, B., Tornberg, L., Sathyamoorthy, S.R., Johansson, G., Delsing, P., Wilson, C.M.: Giant cross-Kerr effect for propagating microwaves induced by an artificial atom. Phys. Rev. Lett. 111(5), 053601 (2013)
Lukin, M.D., Imamoglu, A.: Nonlinear optics and quantum entanglement of ultraslow single photons. Phys. Rev. Lett. 84(7), 1419–1422 (2000)
Bajcsy, M., Zibrov, A.S., Lukin, M.D.: Stationary pulses of light in an atomic medium. Nature 426(6967), 638–641 (2003)
Wang, Z.-B., Marzlin, K.-P., Sanders, B.C.: Large cross-phase modulation between slow copropagating weak pulses in \(^{\rm 87}\)Rb. Phys. Rev. Lett. 97(6), 063901 (2006)
Chen, Y.-F., Wang, C.-Y., Wang, S.-H., Ite, A.: Low-light-level cross-phase-modulation based on stored light pulses. Phys. Rev. Lett. 96(4), 043603 (2006)
Lo, H.-Y., Chen, Y.-C., Su, P.-C., Chen, H.-C., Chen, J.-X., Chen, Y.-C., Ite, A.Y., Chen, Y.-F.: Electromagnetically-induced-transparency-based cross-phase-modulation at attojoule levels. Phys. Rev. A 83(4), 041804(R) (2011)
Shiau, B.-W., Wu, M.-C., Lin, C.-C., Chen, Y.-C.: Low-light-level cross-phase modulation with double slow light pulses. Phys. Rev. Lett. 106(19), 193006 (2011)
Chen, Y.-H., Lee, M.-J., Hung, W., Chen, Y.-C., Chen, Y.-F., Ite, A.Y.: Demonstration of the interaction between two stopped light pulses. Phys. Rev. Lett. 108(17), 173603 (2012)
Venkataraman, V., Saha, K., Gaeta, A.L.: Phase modulation at the few-photon level for weak-nonlinearity-based quantum computing. Nat. Photon. 7(2), 138–141 (2012)
Chen, Y.-H., Lee, M.-J., Wang, I.-C., Du, S., Chen, Y.-F., Chen, Y.-C., Ite, A.Y.: Coherent optical memory with high storage efficiency and large fractional delay. Phys. Rev. Lett. 110(8), 083601 (2013)
Feizpour, A., Hallaji, M., Dmochowski, G., Steinberg, A.M.: Observation of the nonlinear phase shift due to single post-selected photons. Nat. Phys. 11(11), 905–909 (2015)
Feizpour, A., Xing, X., Steinberg, A.M.: Amplifying single-photon nonlinearity using weak measurements. Phys. Rev. Lett. 107(13), 133603 (2011)
Sefi, S., Vaibhav, V., van Loock, P.: Measurement-induced optical Kerr interaction. Phys. Rev. A 88(1), 012303 (2013)
Bartkowiak, M., Wu, L.-A., Miranowicz, A.: Quantum circuits for amplification of Kerr nonlinearity via quadrature squeezing. J. Phys. B 47(14), 145501 (2014)
Shapiro, J.: Single-photon Kerr nonlinearities do not help quantum computation. Phys. Rev. A 73(6), 062305 (2006)
Shapiro, J.H., Razavi, M.: Continuous-time cross-phase modulation and quantum computation. New J. Phys. 9(1), 16 (2007)
Kok, P., Nemoto, K., Ralph, T.C., Dowling, J.P., Milburn, G.J.: Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79(1), 135–174 (2007)
Matsuda, N., Shimizu, R., Mitsumori, Y., Kosaka, H., Edamatsu, K.: Observation of optical-fibre Kerr nonlinearity at the single-photon level. Nat. Photon. 3(2), 95–98 (2009)
Gea-Banacloche, J.: Impossibility of large phase shifts via the giant Kerr effect with single-photon wave packets. Phys. Rev. A 81(4), 043823 (2010)
Fan, B., Kockum, A.F., Combes, J., Johansson, G., Hoi, I., Wilson, C.M., Delsing, P., Milburn, G.J., Stace, T.M.: Breakdown of the cross-Kerr scheme for photon counting. Phys. Rev. Lett. 110(5), 053601 (2013)
Imoto, N., Haus, H.A., Yamamoto, Y.: Quantum nondemolition measurement of the photon number via the optical Kerr effect. Phys. Rev. A 32(4), 2287–2292 (1985)
Barrett, S.D., Kok, P., Nemoto, K., Beausoleil, R.G., Munro, W.J., Spiller, T.P.: Symmetry analyzer for nondestructive bell-state detection using weak nonlinearities. Phys. Rev. A 71(6), 060302(R) (2005)
Munro, W.J., Nemoto, K., Spiller, T.P.: Weak nonlinearities: a new route to optical quantum computation. New J. Phys. 7(1), 137 (2005)
Spiller, T.P., Nemoto, K., Braunstein, S.L., Munro, W.J., Van Loock, P.: Milburn., G.J.: Quantum computation by communication. New J. Phys. 8(2), 30 (2006)
He, B., Ren, Y., Bergou, J.: Creation of high-quality long-distance entanglement with flexible resources. Phys. Rev. A 79(5), 052323 (2009)
Xia, Y., Song, J., Lu, P.-M., Song, H.-S.: Efficient implementation of the two-qubit controlled phase gate with cross-Kerr nonlinearity. J. Phys. B At. Mol. Opt. Phys. 44(2), 025503 (2011)
Guo, Q., Bai, J., Cheng, L.-Y., Shao, X.-Q., Wang, H.-F., Zhang, S.: Simplified optical quantum-information processing via weak cross-Kerr nonlinearities. Phys. Rev. A 83(5), 054303 (2011)
Wang, X.-W., Zhang, D.-Y., Tang, S.-Q., Xie, L.-J., Wang, Z.-Y., Kuang, L.-M.: Photonic two-qubit parity gate with tiny cross-Kerr nonlinearity. Phys. Rev. A 85(5), 052326 (2012)
Xiu, X.-M., Dong, L., Shen, H.-Z., Gao, Y.-J., Yi, X.X.: Construction scheme of a two-photon polarization controlled arbitrary phase gate mediated by weak cross-phase modulation. J. Opt. Soc. Am. B 30(3), 589–597 (2013)
Louis, S.G.R., Nemoto, K., Munro, W.J., Spiller, T.P.: The efficiencies of generating cluster states with weak nonlinearities. New J. Phys. 9(6), 193 (2007)
Louis, S., Nemoto, K., Munro, W., Spiller, T.: Weak nonlinearities and cluster states. Phys. Rev. A 75(4), 042323 (2007)
Dong, L., Wang, J.-X., Li, Q.-Y., Shen, H.-Z., Dong, H.-K., Xiu, X.-M., Gao, Y.-J., Hiap, C.H.: Nearly deterministic preparation of the perfect W state with weak cross-Kerr nonlinearities. Phys. Rev. A 93(1), 012308 (2016)
Sheng, Y.-B., Deng, F.-G., Zhou, H.-Y.: Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity. Phys. Rev. A 77(4), 042308 (2008)
Li, X.-H.: Deterministic polarization-entanglement purification using spatial entanglement. Phys. Rev. A 82(4), 044304 (2010)
Sheng, Y.-B., Deng, F.-G.: Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement. Phys. Rev. A 81(3), 032307 (2010)
Sheng, Y.-B., Deng, F.-G.: One-step deterministic polarization-entanglement purification using spatial entanglement. Phys. Rev. A 82(4), 044305 (2010)
Wang, C., Zhang, Y., Jin, G.-S.: Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities. Phys. Rev. A 84(9), 032307 (2011)
Deng, F.-G.: Efficient multipartite entanglement purification with the entanglement link from a subspace. Phys. Rev. A 84(11), 052312 (2011)
Zhou, L., Sheng, Y.-B.: Recyclable amplification protocol for the single-photon entangled state. Laser Phys. Lett. 12(4), 045203 (2015)
Dong, L., Wang, J.-X., Li, Q.-Y., Shen, H.-Z., Dong, H.-K., Xiu, X.-M., Gao, Y.-J.: Single logical qubit information encoding scheme with the minimal optical decoherence-free subsystem. Opt. Lett. 41(5), 1030–1033 (2016)
Acknowledgements
This study was supported by the National Natural Science Foundation of China (Grant Nos. 11674037, 11544013, 11305016, 61301133, 11271055) and the Program for Liaoning Excellent Talents in University of China (LNET Grant No. LJQ2014124).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Dong, L., Lin, YF., Li, QY. et al. Optical proposals for controlled delayed-choice experiment based on weak cross-Kerr nonlinearities. Quantum Inf Process 16, 122 (2017). https://doi.org/10.1007/s11128-017-1574-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-017-1574-2