Abstract
We present a new scheme for three-dimensional (3D) atom localization in a four-level atomic system based on different coupled mechanisms. Owing to the space-dependent atom–field interaction, the position probability distribution of the atom can be directly determined by measuring the probe absorption and gain spectra. It is found that, based on different coupled mechanisms, the probability of finding the atom in 3D space is increased from 25% to 100%. Our scheme may be helpful in optical microscopy, the atom nano-lithography, and measurement of the center-of-mass wave function of moving atoms, etc.











Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Quadt, R., Collett, M., Walls, D.F.: Measurement of atomic motion in a standing light field by homodyne detection. Phys. Rev. Lett. 74, 351–354 (1995)
Kunze, S., Rempe, G., Wilkens, M.: Atomic-position measurement via internal-state encoding. Europhys. Lett. 27, 115 (1994)
Kunze, S., Dieckmann, K., Rempe, G.: Diffraction of atoms from a measurement induced grating. Phys. Rev. Lett. 78, 2038–2041 (1997)
Qamar, S., Zhu, S.Y., Zubairy, M.S.: Precision localization of single atom using Autler–Townes microscopy. Opt. Commun. 176, 409–416 (2000)
Qamar, S., Zhu, S.Y., Zubairy, M.S.: Atom localization via resonance fluorescence. Phys. Rev. A 61, 063806 (2000)
Sahrai, M., Tajalli, H., Kapale, K.T., Zubairy, M.S.: Subwavelength atom localization via amplitude and phase control of the absorption spectrum. Phys. Rev. A 72, 013820 (2005)
Kapale, K.T., Zubairy, M.S.: Subwavelength atom localization via amplitude and phase control of the absorption spectrum. II. Phys. Rev. A 73, 023813 (2006)
Proite, N.A., Simmons, Z.J., Yavuz, D.D.: Observation of atomic localization using electromagnetically induced transparency. Phys. Rev. A 83, 041803(R) (2011)
Paspalakis, E., Knight, P.L.: Localizing an atom via quantum interference. Phys. Rev. A 63, 065802 (2001)
Liu, C.P., Gong, S.Q., Cheng, D.C., Fan, X.J., Xu, Z.Z.: Atom localization via interference of dark resonances. Phys. Rev. A 73, 025801 (2006)
Xu, J., Hu, X.M.: Sub-half-wavelength atom localization via phase control of a pair of bichromatic fields. Phys. Rev. A 76, 013830 (2007)
Qamar, S., Mehmood, A., Qamar, S.: Subwavelength atom localization via coherent manipulation of the Raman gain process. Phys. Rev. A 79, 033848 (2009)
Ivanov, V., Rozhdestvensky, Y.: Two-dimensional atom localization in a four-level tripod system in laser field. Phys. Rev. A 81, 033809 (2010)
Li, J.H., Yu, R., Liu, M., Ding, C.L., Yang, X.X.: Efficient two-dimensional atom localization via phase-sensitive absorption spectrum in a radio-frequency-driven four-level atomic system. Phys. Lett. A 375, 3978–3985 (2011)
Ding, C.L., Li, J.H., Yang, X.X., Zhang, D., Xiong, H.: Proposal for efficient two-dimensional atom localization using probe absorption in a microwave-driven four-level atomic system. Phys. Rev. A 84, 043840 (2011)
Wan, R.G., Zhang, T.Y., Kou, J.: Two-dimensional sub-half-wavelength atom localization via phase control of absorption and gain. Phys. Rev. A 87, 043816 (2013)
Rahmatullah, Qamar, S.: Two-dimensional atom localization via probe-absorption spectrum. Phys. Rev. A 88, 013846 (2013)
Ding, C.L., Li, J.H., Zhan, Z.M., Yang, X.X.: Two-dimensional atom localization via spontaneous emission in a coherently driven five-level M-type atomic system. Phys. Rev. A 83, 063834 (2011)
Wan, R.G., Kou, J., Jiang, L., Jiang, Y., Gao, J.Y.: Two-dimensional atom localization via interacting double-dark resonances. J. Opt. Soc. Am. B 28(4), 622–628 (2011)
Ivanov, V.S., Rozhdestvensky, Y.V., Suominen, K.: Three-dimensional atom localization by laser fields in a four-level tripod system. Phys. Rev. A 90, 063802 (2014)
Zhu, Z., Yang, W.-X., Xie, X.-T., Liu, S., Liu, S., Lee, R.-K.: Three-dimensional atom localization from spatial interference in a double two-level atomic system. Phys. Rev. A 94, 013826 (2016)
Hamedi, H.R., Juzeliūnas, G.: Phase-sensitive atom localization for closed-loop quantum systems. Phys. Rev. A 94, 013842 (2016)
Meystre, P., Sargent, M.: Elements of Quantum Optics. Springer, Berlin (1999)
Wu, Y., Wen, L.L., Zhu, Y.F.: Efficient hyper-Raman scattering in resonant coherent media. Opt. Lett. 28, 631–633 (2003)
Wu, Y., Saldana, J., Zhu, Y.F.: Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency. Phys. Rev. A 67, 013811 (2003)
Phillips, W.D.: Nobel lecture: laser cooling and trapping of neutral atoms. Rev. Mod. Phys. 70, 721–741 (1998)
Johnson, K.S., Thywissen, J.H., Dekker, N.H., Berggren, K.K., Chu, A.P., Younkin, R., Prentiss, M.: Localization of metastable atom beams with optical standing waves: nanolithography at the Heisenberg limit. Science 280, 1583–1586 (1998)
Pitaevskii, Lev, Stringari, Sandro: Bose–Einstein Condensation and Superfluidity. Oxford University Press, New York (2016)
Zhang, P., Guo, Y., Li, Z., Zhang, Y., Zhang, Y., Du, J., Li, G., Wang, J., Zhang, T.: Elimination of the degenerate trajectory of a single atom strongly coupled to a tilted \(\text{ TEM }_{10}\) cavity mode. Phys. Rev. A 83, 031804 (2011)
Du, J., Li, W., Wen, R., Li, G., Zhang, T.: Precision measurement of single atoms strongly coupled to the higher order transverse modes of a high-finesse optical cavity. Appl. Phys. Lett. 103, 083117 (2013)
Evers, J., Qamar, S., Zubairy, M.S.: Atom localization and center-of-mass wave-function determination via multiple simultaneous quadrature measurements. Phys. Rev. A 75, 053809 (2007)
Acknowledgements
This work is supported by the National Natural Science Foundation of China (Grant Nos. 11674002 and 11205001) and Doctoral Scientific Research Fund of Anhui University.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wang, Z., Song, F., Chen, J. et al. Coherent control of three-dimensional atom localization based on different coupled mechanisms. Quantum Inf Process 16, 129 (2017). https://doi.org/10.1007/s11128-017-1581-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-017-1581-3