Abstract
In this work, we perform a comparative study between the pairwise thermal entanglement (PWTE) and thermal quantum discord (TQD) to detect quantum phase transitions (QPT)s in a three-ligand spin-star structure whose magnetic interactions are described by different model Hamiltonians such as pure Dzyaloshinskii–Moriya (DM) interaction, anisotropic Heisenberg model (XXZ), and XXZ model with the different components of the DM interaction. Representing the system’s energy spectrum, we also focus on the critical points of QPTs where the ground-state level crossing happens in such models. Taking advantage of the concurrence as a measure of the PWTE, we found that while the ligand–ligand concurrence in all models is sensitive to the ground-state level crossing, the concurrence between the central qubit and a ligand cannot exhibit a QPT. In contrast, the TQD between any two arbitrary qubits can be a signature of a QPT in a large range of temperature. However, depending on the model studied, the behavior of the TQD at the critical point will be different. In addition, the TQD behaves quite differently than the concurrence. Moreover, in order to confirm the numerical results, we analytically study the entanglement behavior at the low-temperature limit as well as the high-temperature regime. We realized that, at the low-temperature limit, the maximum value of the concurrence is approximately equal to 0.33, independent of the model studied. On the other hand, at high-temperature regime, the concurrence is suppressed down to zero rapidly beyond a critical value of temperature. The dependence of the critical temperature on the DM interaction and the anisotropy parameter is obtained explicitly. Finally we show that there is a perfect agreement between the analytical results and the numerical predictions.




















Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Sachdev, S.: Quantum Phase Transitions. Wiley Online Library, Hoboken (2007)
Küchler, R., Oeschler, N., Gegenwart, P., Cichorek, T., Neumaier, K., Tegus, O., Geibel, C., Mydosh, J.A., Steglich, F., Zhu, L., et al.: Divergence of the Grüneisen ratio at quantum critical points in heavy fermion metals. Phys. Rev. Lett. 91(6), 066405 (2003)
Zhu, L., Garst, M., Rosch, A., Si, Q.: Universally diverging Grüneisen parameter and the magnetocaloric effect close to quantum critical points. Phys. Rev. Lett. 91(6), 066404 (2003)
Gegenwart, P., Si, Q., Steglich, F.: Quantum criticality in heavy-fermion metals. Nat. Phys. 4(3), 186–197 (2008)
Li, Y.-C., Lin, H.-Q.: Quantum coherence and quantum phase transitions. Sci. Rep. 6 (2016)
Feng, M., Zhong, YP., Liu, T., Yan, LL., Yang, WL., Twamley, J., Wang, H.: Exploring the quantum critical behaviour in a driven Tavis–Cummings circuit. Nat. Commun. 6 (2015)
Osterloh, A., Amico, L., Falci, G., Fazio, R.: Scaling of entanglement close to a quantum phase transition. Nature 416(6881), 608–610 (2002)
Osborne, T.J., Nielsen, M.A.: Entanglement in a simple quantum phase transition. Phys. Rev. A 66(3), 032110 (2002)
Vidal, G., Latorre, J.I., Rico, E., Kitaev, A.: Entanglement in quantum critical phenomena. Phys. Rev. Lett. 90(22), 227902 (2003)
Wu, L.-A., Sarandy, M.S., Lidar, D.A.: Quantum phase transitions and bipartite entanglement. Phys. Rev. Lett. 93(25), 250404 (2004)
Dunningham, J.A.: Quantum phase transitions: entanglement stirred up. Nat. Phys. 5(6), 381–381 (2009)
Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)
Dillenschneider, R.: Quantum discord and quantum phase transition in spin chains. Phys. Rev. B 78(22), 224413 (2008)
Sarandy, M.S.: Classical correlation and quantum discord in critical systems. Phys. Rev. A 80(2), 022108 (2009)
Rulli, C.C., Sarandy, M.S.: Global quantum discord in multipartite systems. Phys. Rev. A 84(4), 042109 (2011)
Saguia, A., Rulli, C.C., de Oliveira, T.R., Sarandy, M.S.: Witnessing nonclassical multipartite states. Phys. Rev. A 84(4), 042123 (2011)
Allegra, M., Giorda, P., Montorsi, A.: Quantum discord and classical correlations in the bond-charge Hubbard model: Quantum phase transitions, off-diagonal long-range order, and violation of the monogamy property for discord. Phys. Rev. B 84(24), 245133 (2011)
Arnesen, M.C., Bose, S., Vedral, V.: Natural thermal and magnetic entanglement in the 1D Heisenberg model. Phys. Rev. Lett. 87(1), 017901 (2001)
Werlang, T., Rigolin, G.: Thermal and magnetic quantum discord in Heisenberg models. Phys. Rev. A 81(4), 044101 (2010)
Werlang, T., Ribeiro, G.A.P., Rigolin, G.: Spotlighting quantum critical points via quantum correlations at finite temperatures. Phys. Rev. A 83(6), 062334 (2011)
Werlang, T., Ribeiro, G.A.P., Rigolin, G.: Interplay between quantum phase transitions and the behavior of quantum correlations at finite temperatures. Int. J. Mod. Phys. B 27(01n03), 1345032 (2013)
Ferreira, A., Guerreiro, A., Vedral, V.: Macroscopic thermal entanglement due to radiation pressure. Phys. Rev. Lett. 96(6), 060407 (2006)
Werlang, T., Trippe, C., Ribeiro, G.A.P., Rigolin, G.: Quantum correlations in spin chains at finite temperatures and quantum phase transitions. Phys. Rev. Lett. 105(9), 095702 (2010)
Maziero, J., Guzman, H.C., Céleri, L.C., Sarandy, M.S., Serra, R.M.: Quantum and classical thermal correlations in the XY spin-1 2 chain. Phys. Rev. A 82(1), 012106 (2010)
Breuer, H.-P., Burgarth, D., Petruccione, F.: Non-markovian dynamics in a spin star system: exact solution and approximation techniques. Phys. Rev. B 70(4), 045323 (2004)
Krovi, H., Oreshkov, O., Ryazanov, M., Lidar, D.A.: Non-Markovian dynamics of a qubit coupled to an Ising spin bath. Phys. Rev. A 76(5), 052117 (2007)
Ferraro, E., Breuer, H.-P., Napoli, A., Jivulescu, M.A., Messina, A.: Non-markovian dynamics of a single electron spin coupled to a nuclear spin bath. Phys. Rev. B 78(6), 064309 (2008)
Rossini, D., Facchi, P., Fazio, R., Florio, G., Lidar, D.A., Pascazio, S., Plastina, F., Zanardi, P.: Bang–bang control of a qubit coupled to a quantum critical spin bath. Phys. Rev. A 77(5), 052112 (2008)
Wan-Li, Y., Hua, W., Mang, F., Jun-Hong, A.: Tunable thermal entanglement in an effective spin-star system using coupled microcavities. Chin. Phys. B 18(9), 3677 (2009)
Arshed, N., Toor, A.H., Lidar, D.A.: Channel capacities of an exactly solvable spin-star system. Phys. Rev. A 81(6), 062353 (2010)
Anza, F., Militello, B., Messina, A.: Tripartite thermal correlations in an inhomogeneous spin-star system. J. Phys. B At. Mol. Opt. Phys. 43(20), 205501 (2010)
Militello, B., Messina, A.: Genuine tripartite entanglement in a spin-star network at thermal equilibrium. Phys. Rev. A 83(4), 042305 (2011)
Ma, X.S., Zhao, G.X., Zhang, J.Y., Wang, A.M.: Tripartite entanglement of a spin star model with Dzialoshinski–Moriya interaction. Quantum Inf. Process. 12(1), 321–329 (2013)
Behzadi, N., Ahansaz, B.: Thermal tripartite quantum correlations: quantum discord and entanglement perspectives. Eur. Phys. J. D 67(6), 1–9 (2013)
Türkpençe, D., Altintas, F., Paternostro, M., Müstecaplıoğlu, Ö.E.: A photonic carnot engine powered by a quantum spin-star network. arXiv preprint arXiv:1611.01475 (2016)
Reinhard, F., Shi, F., Zhao, N., Rempp, F., Naydenov, B., Meijer, J., Hall, L.T., Hollenberg, L., Du, J., Liu, R.-B., et al.: Tuning a spin bath through the quantum-classical transition. Phys. Rev. Lett. 108(20), 200402 (2012)
Hanson, R., Dobrovitski, V.V., Feiguin, A.E., Gywat, O., Awschalom, D.D.: Coherent dynamics of a single spin interacting with an adjustable spin bath. Science 320(5874), 352–355 (2008)
Hutton, A., Bose, S.: Comparison of star and ring topologies for entanglement distribution. Phys. Rev. A 66(3), 032320 (2002)
Hutton, A., Bose, S.: Mediated entanglement and correlations in a star network of interacting spins. Phys. Rev. A 69(4), 042312 (2004)
De Chiara, G., Fazio, R., Macchiavello, C., Montangero, S., Palma, G.M.: Quantum cloning in spin networks. Phys. Rev. A 70(6), 062308 (2004)
Chen, Y., Shao, X.-Q., Zhu, A., Yeon, K.-H., Yu, S.-C.: Improving fidelity of quantum cloning via the Dzyaloshinskii–Moriya interaction in a spin network. Phys. Rev. A 81(3), 032338 (2010)
Motamedifar, M.: Dynamical pairwise entanglement and two-point correlations in the three-ligand spin-star structure. Physica A: Stat. Mech. Appl. doi:10.1016/j.physa.2017.04.007
Dzialoshinskii, I.E.: Thermodynamic theory of weak ferromagnetism in antiferromagnetic substances. Sov. Phys. JETP-USSR 5(6), 1259–1272 (1957)
Dzyaloshinskii, I.E.: A thermodynamic theory of weak ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4(4), 241–255 (1958)
Moriya, T.: New mechanism of anisotropic superexchange interaction. Phys. Rev. Lett. 4(5), 228 (1960)
Moriya, T.: Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120(1), 91 (1960)
Banerjee, S., Erten, O., Randeria, M.: Ferromagnetic exchange, spin-orbit coupling and spiral magnetism at the LaAl\(\text{ O }_{3}\)/SrTi\(\text{ O }_{3}\) interface. Nat. Phys. 9(10), 626–630 (2013)
Perks, N.J., Johnson, R.D., Martin, C., Chapon, L.C., Radaelli, P.G.: Magneto-orbital helices as a route to coupling magnetism and ferroelectricity in multiferroic camn7o12. Nat. Commun. 3, 1277 (2012)
Dmitrienko, V.E., Ovchinnikova, E.N., Collins, S.P., Nisbet, G., Beutier, G., Kvashnin, Y.O., Mazurenko, V.V., Lichtenstein, A.I., Katsnelson, M.I.: Measuring the Dzyaloshinskii–Moriya interaction in a weak ferromagnet. Nat. Phys. 10(3), 202–206 (2014)
Lunkenheimer, P., Müller, J., Krohns, S., Schrettle, F., Loidl, A., Hartmann, B., Rommel, R., De Souza, M., Hotta, C., Schlueter, J.A., et al.: Multiferroicity in an organic charge-transfer salt that is suggestive of electric-dipole-driven magnetism. Nat. Mater. 11(9), 755–758 (2012)
Sergienko, I.A., Dagotto, E.: Role of the Dzyaloshinskii–Moriya interaction in multiferroic perovskites. Phys. Rev. B 73(9), 094434 (2006)
San Ma, X., Cheng, M.-T., Zhao, G.-X., Wang, A.M.: Effect of Dzialoshinski–Moriya interaction on the quantum discord of a spin-star model. Phys. A Stat. Mech. Appl. 391(7), 2500 (2012)
Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53(4), 2046 (1996)
Rungta, P., Bužek, V., Caves, C.M., Hillery, M., Milburn, G.J.: Universal state inversion and concurrence in arbitrary dimensions. Phys. Rev. A 64(4), 042315 (2001)
Uhlmann, A.: Fidelity and concurrence of conjugated states. Phys. Rev. A 62(3), 032307 (2000)
Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78(26), 5022 (1997)
Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80(10), 2245 (1998)
Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65(3), 032314 (2002)
Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77(8), 1413 (1996)
Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223(1), 1–8 (1996)
Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A Math. Gen. 34(35), 6899 (2001)
Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75(3), 715 (2003)
Luo, S.: Quantum discord for two-qubit systems. Phys. Rev. A 77(4), 042303 (2008)
Rong, X., Wang, Z., Jin, F., Geng, J., Feng, P., Xu, N., Wang, Y., Ju, C., Shi, M., Du, J.: Quantum discord for investigating quantum correlations without entanglement in solids. Phys. Rev. B 86(10), 104425 (2012)
Li, D.-C., Wang, X.-P., Cao, Z.-L.: Thermal entanglement in the anisotropic Heisenberg XXZ model with the Dzyaloshinskii–Moriya interaction. J. Phys. Condens. Matter 20(32), 325229 (2008)
Acknowledgements
This work is based upon research supported by Shahid Bahonar University Foundation. The author’s special thanks should be given to Ali Davody for his assistance in mathematical manipulations and reviewing the manuscript. The author would also like to thank S. Mahdavifar, M. H. Alizadeh, H. Maleki, and Mrs. F. Mohtashamian for their help in improving the presentation. The author thanks all scientists who helped and communicated for clarifying some details and approaches in the past years in special, A. Honecker and M. Troyer.
Author information
Authors and Affiliations
Corresponding author
Appendices
Appendix 1
The eigenvalues and eigenvectors of the Hamiltonian written in Eq. 13 (DM-3LSSS) are as
Appendix 2
The eigenvalues and eigenvectors of the Hamiltonian written in Eq. 15 (XXZ-3LSSS) are as
Rights and permissions
About this article
Cite this article
Motamedifar, M. Pairwise thermal entanglement and quantum discord in a three-ligand spin-star structure. Quantum Inf Process 16, 162 (2017). https://doi.org/10.1007/s11128-017-1611-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-017-1611-1