Skip to main content
Log in

Pairwise thermal entanglement and quantum discord in a three-ligand spin-star structure

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this work, we perform a comparative study between the pairwise thermal entanglement (PWTE) and thermal quantum discord (TQD) to detect quantum phase transitions (QPT)s in a three-ligand spin-star structure whose magnetic interactions are described by different model Hamiltonians such as pure Dzyaloshinskii–Moriya (DM) interaction, anisotropic Heisenberg model (XXZ), and XXZ model with the different components of the DM interaction. Representing the system’s energy spectrum, we also focus on the critical points of QPTs where the ground-state level crossing happens in such models. Taking advantage of the concurrence as a measure of the PWTE, we found that while the ligand–ligand concurrence in all models is sensitive to the ground-state level crossing, the concurrence between the central qubit and a ligand cannot exhibit a QPT. In contrast, the TQD between any two arbitrary qubits can be a signature of a QPT in a large range of temperature. However, depending on the model studied, the behavior of the TQD at the critical point will be different. In addition, the TQD behaves quite differently than the concurrence. Moreover, in order to confirm the numerical results, we analytically study the entanglement behavior at the low-temperature limit as well as the high-temperature regime. We realized that, at the low-temperature limit, the maximum value of the concurrence is approximately equal to 0.33, independent of the model studied. On the other hand, at high-temperature regime, the concurrence is suppressed down to zero rapidly beyond a critical value of temperature. The dependence of the critical temperature on the DM interaction and the anisotropy parameter is obtained explicitly. Finally we show that there is a perfect agreement between the analytical results and the numerical predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Sachdev, S.: Quantum Phase Transitions. Wiley Online Library, Hoboken (2007)

    Book  MATH  Google Scholar 

  2. Küchler, R., Oeschler, N., Gegenwart, P., Cichorek, T., Neumaier, K., Tegus, O., Geibel, C., Mydosh, J.A., Steglich, F., Zhu, L., et al.: Divergence of the Grüneisen ratio at quantum critical points in heavy fermion metals. Phys. Rev. Lett. 91(6), 066405 (2003)

    Article  ADS  Google Scholar 

  3. Zhu, L., Garst, M., Rosch, A., Si, Q.: Universally diverging Grüneisen parameter and the magnetocaloric effect close to quantum critical points. Phys. Rev. Lett. 91(6), 066404 (2003)

    Article  ADS  Google Scholar 

  4. Gegenwart, P., Si, Q., Steglich, F.: Quantum criticality in heavy-fermion metals. Nat. Phys. 4(3), 186–197 (2008)

    Article  Google Scholar 

  5. Li, Y.-C., Lin, H.-Q.: Quantum coherence and quantum phase transitions. Sci. Rep. 6 (2016)

  6. Feng, M., Zhong, YP., Liu, T., Yan, LL., Yang, WL., Twamley, J., Wang, H.: Exploring the quantum critical behaviour in a driven Tavis–Cummings circuit. Nat. Commun. 6 (2015)

  7. Osterloh, A., Amico, L., Falci, G., Fazio, R.: Scaling of entanglement close to a quantum phase transition. Nature 416(6881), 608–610 (2002)

    Article  ADS  Google Scholar 

  8. Osborne, T.J., Nielsen, M.A.: Entanglement in a simple quantum phase transition. Phys. Rev. A 66(3), 032110 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  9. Vidal, G., Latorre, J.I., Rico, E., Kitaev, A.: Entanglement in quantum critical phenomena. Phys. Rev. Lett. 90(22), 227902 (2003)

    Article  ADS  Google Scholar 

  10. Wu, L.-A., Sarandy, M.S., Lidar, D.A.: Quantum phase transitions and bipartite entanglement. Phys. Rev. Lett. 93(25), 250404 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  11. Dunningham, J.A.: Quantum phase transitions: entanglement stirred up. Nat. Phys. 5(6), 381–381 (2009)

    Article  Google Scholar 

  12. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  MATH  Google Scholar 

  13. Dillenschneider, R.: Quantum discord and quantum phase transition in spin chains. Phys. Rev. B 78(22), 224413 (2008)

    Article  ADS  Google Scholar 

  14. Sarandy, M.S.: Classical correlation and quantum discord in critical systems. Phys. Rev. A 80(2), 022108 (2009)

    Article  ADS  Google Scholar 

  15. Rulli, C.C., Sarandy, M.S.: Global quantum discord in multipartite systems. Phys. Rev. A 84(4), 042109 (2011)

    Article  ADS  Google Scholar 

  16. Saguia, A., Rulli, C.C., de Oliveira, T.R., Sarandy, M.S.: Witnessing nonclassical multipartite states. Phys. Rev. A 84(4), 042123 (2011)

    Article  ADS  Google Scholar 

  17. Allegra, M., Giorda, P., Montorsi, A.: Quantum discord and classical correlations in the bond-charge Hubbard model: Quantum phase transitions, off-diagonal long-range order, and violation of the monogamy property for discord. Phys. Rev. B 84(24), 245133 (2011)

    Article  ADS  Google Scholar 

  18. Arnesen, M.C., Bose, S., Vedral, V.: Natural thermal and magnetic entanglement in the 1D Heisenberg model. Phys. Rev. Lett. 87(1), 017901 (2001)

    Article  ADS  Google Scholar 

  19. Werlang, T., Rigolin, G.: Thermal and magnetic quantum discord in Heisenberg models. Phys. Rev. A 81(4), 044101 (2010)

    Article  ADS  Google Scholar 

  20. Werlang, T., Ribeiro, G.A.P., Rigolin, G.: Spotlighting quantum critical points via quantum correlations at finite temperatures. Phys. Rev. A 83(6), 062334 (2011)

    Article  ADS  Google Scholar 

  21. Werlang, T., Ribeiro, G.A.P., Rigolin, G.: Interplay between quantum phase transitions and the behavior of quantum correlations at finite temperatures. Int. J. Mod. Phys. B 27(01n03), 1345032 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Ferreira, A., Guerreiro, A., Vedral, V.: Macroscopic thermal entanglement due to radiation pressure. Phys. Rev. Lett. 96(6), 060407 (2006)

    Article  ADS  Google Scholar 

  23. Werlang, T., Trippe, C., Ribeiro, G.A.P., Rigolin, G.: Quantum correlations in spin chains at finite temperatures and quantum phase transitions. Phys. Rev. Lett. 105(9), 095702 (2010)

    Article  ADS  Google Scholar 

  24. Maziero, J., Guzman, H.C., Céleri, L.C., Sarandy, M.S., Serra, R.M.: Quantum and classical thermal correlations in the XY spin-1 2 chain. Phys. Rev. A 82(1), 012106 (2010)

    Article  ADS  Google Scholar 

  25. Breuer, H.-P., Burgarth, D., Petruccione, F.: Non-markovian dynamics in a spin star system: exact solution and approximation techniques. Phys. Rev. B 70(4), 045323 (2004)

    Article  ADS  Google Scholar 

  26. Krovi, H., Oreshkov, O., Ryazanov, M., Lidar, D.A.: Non-Markovian dynamics of a qubit coupled to an Ising spin bath. Phys. Rev. A 76(5), 052117 (2007)

    Article  ADS  Google Scholar 

  27. Ferraro, E., Breuer, H.-P., Napoli, A., Jivulescu, M.A., Messina, A.: Non-markovian dynamics of a single electron spin coupled to a nuclear spin bath. Phys. Rev. B 78(6), 064309 (2008)

    Article  ADS  Google Scholar 

  28. Rossini, D., Facchi, P., Fazio, R., Florio, G., Lidar, D.A., Pascazio, S., Plastina, F., Zanardi, P.: Bang–bang control of a qubit coupled to a quantum critical spin bath. Phys. Rev. A 77(5), 052112 (2008)

    Article  ADS  Google Scholar 

  29. Wan-Li, Y., Hua, W., Mang, F., Jun-Hong, A.: Tunable thermal entanglement in an effective spin-star system using coupled microcavities. Chin. Phys. B 18(9), 3677 (2009)

    Article  ADS  Google Scholar 

  30. Arshed, N., Toor, A.H., Lidar, D.A.: Channel capacities of an exactly solvable spin-star system. Phys. Rev. A 81(6), 062353 (2010)

    Article  ADS  Google Scholar 

  31. Anza, F., Militello, B., Messina, A.: Tripartite thermal correlations in an inhomogeneous spin-star system. J. Phys. B At. Mol. Opt. Phys. 43(20), 205501 (2010)

    Article  ADS  Google Scholar 

  32. Militello, B., Messina, A.: Genuine tripartite entanglement in a spin-star network at thermal equilibrium. Phys. Rev. A 83(4), 042305 (2011)

    Article  ADS  Google Scholar 

  33. Ma, X.S., Zhao, G.X., Zhang, J.Y., Wang, A.M.: Tripartite entanglement of a spin star model with Dzialoshinski–Moriya interaction. Quantum Inf. Process. 12(1), 321–329 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Behzadi, N., Ahansaz, B.: Thermal tripartite quantum correlations: quantum discord and entanglement perspectives. Eur. Phys. J. D 67(6), 1–9 (2013)

    Article  ADS  Google Scholar 

  35. Türkpençe, D., Altintas, F., Paternostro, M., Müstecaplıoğlu, Ö.E.: A photonic carnot engine powered by a quantum spin-star network. arXiv preprint arXiv:1611.01475 (2016)

  36. Reinhard, F., Shi, F., Zhao, N., Rempp, F., Naydenov, B., Meijer, J., Hall, L.T., Hollenberg, L., Du, J., Liu, R.-B., et al.: Tuning a spin bath through the quantum-classical transition. Phys. Rev. Lett. 108(20), 200402 (2012)

    Article  ADS  Google Scholar 

  37. Hanson, R., Dobrovitski, V.V., Feiguin, A.E., Gywat, O., Awschalom, D.D.: Coherent dynamics of a single spin interacting with an adjustable spin bath. Science 320(5874), 352–355 (2008)

    Article  ADS  Google Scholar 

  38. Hutton, A., Bose, S.: Comparison of star and ring topologies for entanglement distribution. Phys. Rev. A 66(3), 032320 (2002)

    Article  ADS  Google Scholar 

  39. Hutton, A., Bose, S.: Mediated entanglement and correlations in a star network of interacting spins. Phys. Rev. A 69(4), 042312 (2004)

    Article  ADS  Google Scholar 

  40. De Chiara, G., Fazio, R., Macchiavello, C., Montangero, S., Palma, G.M.: Quantum cloning in spin networks. Phys. Rev. A 70(6), 062308 (2004)

    Article  ADS  Google Scholar 

  41. Chen, Y., Shao, X.-Q., Zhu, A., Yeon, K.-H., Yu, S.-C.: Improving fidelity of quantum cloning via the Dzyaloshinskii–Moriya interaction in a spin network. Phys. Rev. A 81(3), 032338 (2010)

    Article  ADS  Google Scholar 

  42. Motamedifar, M.: Dynamical pairwise entanglement and two-point correlations in the three-ligand spin-star structure. Physica A: Stat. Mech. Appl. doi:10.1016/j.physa.2017.04.007

  43. Dzialoshinskii, I.E.: Thermodynamic theory of weak ferromagnetism in antiferromagnetic substances. Sov. Phys. JETP-USSR 5(6), 1259–1272 (1957)

    MATH  Google Scholar 

  44. Dzyaloshinskii, I.E.: A thermodynamic theory of weak ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4(4), 241–255 (1958)

    Article  ADS  Google Scholar 

  45. Moriya, T.: New mechanism of anisotropic superexchange interaction. Phys. Rev. Lett. 4(5), 228 (1960)

    Article  ADS  Google Scholar 

  46. Moriya, T.: Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120(1), 91 (1960)

    Article  ADS  Google Scholar 

  47. Banerjee, S., Erten, O., Randeria, M.: Ferromagnetic exchange, spin-orbit coupling and spiral magnetism at the LaAl\(\text{ O }_{3}\)/SrTi\(\text{ O }_{3}\) interface. Nat. Phys. 9(10), 626–630 (2013)

    Article  Google Scholar 

  48. Perks, N.J., Johnson, R.D., Martin, C., Chapon, L.C., Radaelli, P.G.: Magneto-orbital helices as a route to coupling magnetism and ferroelectricity in multiferroic camn7o12. Nat. Commun. 3, 1277 (2012)

    Article  ADS  Google Scholar 

  49. Dmitrienko, V.E., Ovchinnikova, E.N., Collins, S.P., Nisbet, G., Beutier, G., Kvashnin, Y.O., Mazurenko, V.V., Lichtenstein, A.I., Katsnelson, M.I.: Measuring the Dzyaloshinskii–Moriya interaction in a weak ferromagnet. Nat. Phys. 10(3), 202–206 (2014)

    Article  Google Scholar 

  50. Lunkenheimer, P., Müller, J., Krohns, S., Schrettle, F., Loidl, A., Hartmann, B., Rommel, R., De Souza, M., Hotta, C., Schlueter, J.A., et al.: Multiferroicity in an organic charge-transfer salt that is suggestive of electric-dipole-driven magnetism. Nat. Mater. 11(9), 755–758 (2012)

    Article  ADS  Google Scholar 

  51. Sergienko, I.A., Dagotto, E.: Role of the Dzyaloshinskii–Moriya interaction in multiferroic perovskites. Phys. Rev. B 73(9), 094434 (2006)

    Article  ADS  Google Scholar 

  52. San Ma, X., Cheng, M.-T., Zhao, G.-X., Wang, A.M.: Effect of Dzialoshinski–Moriya interaction on the quantum discord of a spin-star model. Phys. A Stat. Mech. Appl. 391(7), 2500 (2012)

    Article  Google Scholar 

  53. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53(4), 2046 (1996)

    Article  ADS  Google Scholar 

  54. Rungta, P., Bužek, V., Caves, C.M., Hillery, M., Milburn, G.J.: Universal state inversion and concurrence in arbitrary dimensions. Phys. Rev. A 64(4), 042315 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  55. Uhlmann, A.: Fidelity and concurrence of conjugated states. Phys. Rev. A 62(3), 032307 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  56. Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78(26), 5022 (1997)

    Article  ADS  Google Scholar 

  57. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80(10), 2245 (1998)

    Article  ADS  Google Scholar 

  58. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65(3), 032314 (2002)

    Article  ADS  Google Scholar 

  59. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77(8), 1413 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223(1), 1–8 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A Math. Gen. 34(35), 6899 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75(3), 715 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. Luo, S.: Quantum discord for two-qubit systems. Phys. Rev. A 77(4), 042303 (2008)

    Article  ADS  Google Scholar 

  64. Rong, X., Wang, Z., Jin, F., Geng, J., Feng, P., Xu, N., Wang, Y., Ju, C., Shi, M., Du, J.: Quantum discord for investigating quantum correlations without entanglement in solids. Phys. Rev. B 86(10), 104425 (2012)

    Article  ADS  Google Scholar 

  65. Li, D.-C., Wang, X.-P., Cao, Z.-L.: Thermal entanglement in the anisotropic Heisenberg XXZ model with the Dzyaloshinskii–Moriya interaction. J. Phys. Condens. Matter 20(32), 325229 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This work is based upon research supported by Shahid Bahonar University Foundation. The author’s special thanks should be given to Ali Davody for his assistance in mathematical manipulations and reviewing the manuscript. The author would also like to thank S. Mahdavifar, M. H. Alizadeh, H. Maleki, and Mrs. F. Mohtashamian for their help in improving the presentation. The author thanks all scientists who helped and communicated for clarifying some details and approaches in the past years in special, A. Honecker and M. Troyer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Motamedifar.

Appendices

Appendix 1

The eigenvalues and eigenvectors of the Hamiltonian written in Eq. 13 (DM-3LSSS) are as

$$\begin{aligned} E_1= & {} -D~~,E_2=D,~~E_{3,4}=-\frac{\sqrt{3}D}{2},~~E_{5,6}=\frac{\sqrt{3}D}{2},~~ E_{7,8}=-\frac{D}{2},\\ E_{9,10}= & {} \frac{D}{2},~~E_{11,12,13,14,15,16}=0\\ |\psi _1\rangle= & {} \frac{1}{\sqrt{6}}\Big [i|0011\rangle +i|0101\rangle +i|0110\rangle +|1001\rangle +|1010\rangle +|1100\rangle \Big ],\\ |\psi _2\rangle= & {} \frac{1}{\sqrt{6}}\Big [-i|0011\rangle -i|0101\rangle -i|0110\rangle +|1001\rangle +|1010\rangle +|1100\rangle \Big ],\\ |\psi _3\rangle= & {} \frac{1}{\sqrt{6}}\Big [i\sqrt{3} |0111\rangle +|1011\rangle +|1101\rangle +|1110\rangle \Big ],\\ |\psi _4\rangle= & {} \frac{1}{\sqrt{6}}\Big [i|0001\rangle +i|0010\rangle +i|0100\rangle +\sqrt{3}|1000\rangle \Big ],\\ |\psi _5\rangle= & {} \frac{1}{\sqrt{6}}\Big [-i\sqrt{3} |0111\rangle +|1011\rangle +|1101\rangle +|1110\rangle \Big ],\\ |\psi _6\rangle= & {} \frac{1}{\sqrt{6}}\Big [-i|0001\rangle -i|0010\rangle -i|0100\rangle +\sqrt{3}|1000\rangle \Big ],\\ |\psi _7\rangle= & {} \frac{1}{ 2}\Big [-i|0011\rangle +i|0110\rangle -|1001\rangle +|1100\rangle \Big ],\\ |\psi _8\rangle= & {} \frac{1}{2\sqrt{3}}\Big [i|0011\rangle -2i|0101\rangle +i|0110\rangle -|1001\rangle +2|1010\rangle -|1100\rangle \Big ],\\ |\psi _9\rangle= & {} \frac{1}{ 2}\Big [i|0011\rangle -i|0110\rangle -|1001\rangle +|1100\rangle \Big ],\\ |\psi _{10}\rangle= & {} \frac{1}{2\sqrt{3}}\Big [-i|0011\rangle +2i|0101\rangle -i|0110\rangle -|1001\rangle +2|1010\rangle -|1100\rangle \Big ],\\ |\psi _{11}\rangle= & {} |1111\rangle ,\\ |\psi _{12}\rangle= & {} \frac{1}{\sqrt{2}}\Big [-|1011\rangle +|1110\rangle \Big ],\\ |\psi _{13}\rangle= & {} \frac{1}{\sqrt{6}}\Big [-|1011\rangle +2|1101\rangle -|1110\rangle \Big ],\\ |\psi _{14}\rangle= & {} \frac{1}{\sqrt{2}}\Big [-|0001\rangle +|0100\rangle \Big ],\\ |\psi _{15}\rangle= & {} \frac{1}{\sqrt{6}}\Big [-|0001\rangle +2|0010\rangle -|0100\rangle \Big ],\\ |\psi _{16}\rangle= & {} |0000\rangle , \end{aligned}$$

Appendix 2

The eigenvalues and eigenvectors of the Hamiltonian written in Eq. 15 (XXZ-3LSSS) are as

$$\begin{aligned} E_1= & {} \frac{1}{4} (-\varDelta -4)~~,E_{2,3}=\frac{1}{4} (-\varDelta -2),~~E_{4,5}= \frac{2-\varDelta }{4},~~E_{6}=\frac{4-\varDelta }{4}, \\ E_{7,8,9,10}= & {} \frac{\varDelta }{4},~~ E_{11,12}=\frac{3\varDelta }{4}, E_{13,14}=\frac{1}{4} \left( -2 \sqrt{\varDelta ^2+3}-\varDelta \right) , \\ E_{15,16}= & {} \frac{1}{4} \left( 2 \sqrt{\varDelta ^2+3}-\varDelta \right) \end{aligned}$$
$$\begin{aligned} |\psi _1\rangle= & {} \frac{1}{\sqrt{6}}\Big [-|0011\rangle -|0101\rangle -|0110\rangle +|1001 \rangle +|1010\rangle +|1100\rangle \Big ],\\ |\psi _2\rangle= & {} \frac{1}{ 2}\Big [|0011\rangle -|0110\rangle -|1001\rangle +|1100 \rangle \Big ],\\ |\psi _3\rangle= & {} \frac{1}{ 2}\Big [|0101\rangle -|0110\rangle -|1001\rangle +|1010\rangle \Big ],\\ |\psi _4\rangle= & {} \frac{1}{ 2}\Big [-|0011\rangle +|0110\rangle -|1001\rangle +| 1100\rangle \Big ],\\ |\psi _5\rangle= & {} \frac{1}{ 2}\Big [-|0101\rangle +|0110\rangle -|1001\rangle +| 1010\rangle \Big ],\\ |\psi _6\rangle= & {} \frac{1}{\sqrt{6}}\Big [|0011\rangle +|0101\rangle +|0110\rangle + |1001\rangle +|1010\rangle +|1100\rangle \Big ],\\ |\psi _{7}\rangle= & {} \frac{1}{\sqrt{2}}\Big [-|1011\rangle +|1110\rangle \Big ],\\ |\psi _{8}\rangle= & {} \frac{1}{\sqrt{2}}\Big [-|1011\rangle +|1101\rangle \Big ],\\ |\psi _{9}\rangle= & {} \frac{1}{\sqrt{2}}\Big [-|0001\rangle +|0100\rangle \Big ],\\ |\psi _{10}\rangle= & {} \frac{1}{\sqrt{2}}\Big [-|0001\rangle +|0010\rangle \Big ],\\ |\psi _{11}\rangle= & {} |1111\rangle ,\\ |\psi _{12}\rangle= & {} |0000\rangle ,\\ |\psi _{13}\rangle= & {} \frac{1}{\sqrt{3+\zeta _{13}^2}}\Big [-\zeta _{13} |0111\rangle +|1011\rangle +|1101\rangle +|1110\rangle \Big ],\\ |\psi _{14}\rangle= & {} \frac{\zeta _{14}}{\sqrt{1+3\zeta _{14}^2}}\Big [-|0001 \rangle -|0010\rangle -|0100\rangle +\frac{1}{\zeta _{14}}|1000\rangle \Big ],\\ |\psi _{15}\rangle= & {} \frac{1}{\sqrt{3+\zeta _{15}^2}}\Big [\zeta _{15} |0111\rangle +| 1011\rangle +|1101\rangle +|1110\rangle \Big ],\\ |\psi _{16}\rangle= & {} \frac{\zeta _{16}}{\sqrt{1+3\zeta _{16}^2}}\Big [|0001\rangle +| 0010\rangle +|0100\rangle +\frac{1}{\zeta _{16}}|1000\rangle \Big ],\\ \zeta _{13}= & {} \sqrt{\varDelta ^2+3}+\varDelta ,~~~\zeta _{14}=\frac{1}{\sqrt{\varDelta ^2+3}+ \varDelta },\\ \zeta _{15}= & {} \sqrt{\varDelta ^2+3}-\varDelta ,~~~\zeta _{16}=\frac{1}{\sqrt{\varDelta ^2+3}- \varDelta }, \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motamedifar, M. Pairwise thermal entanglement and quantum discord in a three-ligand spin-star structure. Quantum Inf Process 16, 162 (2017). https://doi.org/10.1007/s11128-017-1611-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1611-1

Keywords