Skip to main content
Log in

Quantum image encryption scheme with iterative generalized Arnold transforms and quantum image cycle shift operations

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A new quantum image encryption scheme is suggested by using the iterative generalized Arnold transforms and the quantum image cycle shift operations. The times of the quantum image cycle shift operations are controlled by a hyper-chaotic sequence generated by a new 4D hyper-chaotic system. The image pixels are scrambled by the iterative generalized Arnold transform, and the values of the pixels are altered by the quantum image cycle shift operations. The four initial conditions of the new 4D hyper-chaotic system are exploited to control the two parameters, the iterative rounds of the generalized Arnold transform and the times of the quantum image cycle shift operations, respectively. Thus, the main keys of the proposed quantum image encryption scheme are the four initial conditions of the new 4D hyper-chaotic system and the key space is relatively large enough. Simulation results and theoretical analyses demonstrate that the proposed quantum image encryption scheme outperforms its classical counterparts apparently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Fridrich, J.: Symmetric ciphers based on two-dimensional chaotic maps. Int. J. Bifurc. Chaos 8(6), 1259–1284 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Guan, Z.H., Huang, F., Guan, W.: Chaos-based image encryption algorithm. Phys. Lett. A 346(1), 153–157 (2005)

    Article  ADS  MATH  Google Scholar 

  3. Gao, H., Zhang, Y., Liang, S., Li, D.: A new chaotic algorithm for image encryption. Chaos Solitons Fractals 29(2), 393–399 (2006)

    Article  ADS  MATH  Google Scholar 

  4. Wang, X., Guo, K.: A new image alternate encryption algorithm based on chaotic map. Nonlinear Dyn. 76(4), 1943–1950 (2014)

    Article  MATH  Google Scholar 

  5. Ye, G., Wong, K.W.: An efficient chaotic image encryption algorithm based on a generalized Arnold map. Nonlinear Dyn. 69(4), 2079–2087 (2012)

    Article  MathSciNet  Google Scholar 

  6. Chen, J.X., Zhu, Z.L., Fu, C., Yu, H.: Optical image encryption scheme using 3-D chaotic map based joint image scrambling and random encoding in gyrator domains. Opt. Commun. 341, 263–270 (2015)

    Article  Google Scholar 

  7. Peng, J., Zhang, D., Liao, X.: A digital image encryption algorithm based on hyper-chaotic cellular Neural network. Fundamenta Informaticae 90(3), 269–282 (2009)

    MathSciNet  Google Scholar 

  8. Hermassi, H., Rhouma, R., Belghith, S.: Improvement of an image encryption algorithm based on hyper-chaos. Telecommun. Syst. 52(2), 539–549 (2013)

    Google Scholar 

  9. Zhu, H., Zhao, C., Zhang, X.: A novel image encryption-compression scheme using hyper-chaos and Chinese remainder theorem. Signal Process. Image Commun. 28(6), 670–680 (2013)

    Article  Google Scholar 

  10. Tong, X.J., Liu, Y., Zhang, M., Xu, H., Wang, Z.: An image encryption scheme based on hyperchaotic rabinovich and exponential chaos map. Entropy 17(1), 181–196 (2015)

    Article  ADS  Google Scholar 

  11. Norouzi, B., Mirzakuchaki, S.: A fast color image encryption algorithm based on hyper-chaotic systems. Nonlinear Dyn. 78(2), 995–1015 (2014)

    Article  Google Scholar 

  12. Gao, T., Gu, Q., Emmanuel, S.: A novel image authentication scheme based on hyper-chaotic cell neural network. Chaos Solitons Fractals 42(1), 548–553 (2009)

    Article  ADS  Google Scholar 

  13. Zhang, Y., Wen, W., Su, M., Li, M.: Cryptanalyzing a novel image fusion encryption algorithm based on DNA sequence operation and hyper-chaotic system. Optik 125(4), 1562–1564 (2014)

    Article  ADS  Google Scholar 

  14. Özkaynak, F., Yavuz, S.: Analysis and improvement of a novel image fusion encryption algorithm based on DNA sequence operation and hyper-chaotic system. Nonlinear Dyn. 78(2), 1311–1320 (2014)

    Article  MATH  Google Scholar 

  15. Zhou, N.R., Pan, S.M., Cheng, S., Zhou, Z.H.: Image compression-encryption scheme based on hyper-chaotic system and 2D compressive sensing. Optics Laser Technol. 82, 121–133 (2016)

    Article  ADS  Google Scholar 

  16. Zhou, L., Chen, Z., Wang, Z., Wang, J.: On the analysis of local bifurcation and topological horseshoe of a new 4D hyper-chaotic system. Chaos Solitons Fractals 91, 148–156 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  17. Venegas-Andraca, S.E., Ball, J.L.: Processing images in entangled quantum systems. Quantum Inf. Process. 9(1), 1–11 (2010)

    Article  MathSciNet  Google Scholar 

  18. Le, P.Q., Dong, F.Y., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10(1), 63–84 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sun, B., Le, P.Q., Iliyasu, A.M., Yan, F., Garcia, J.A., Dong, F., Hirota, K.: A multi-channel representation for images on quantum computers using the RGB\(\alpha \) color space. In: Intelligent Signal Processing (WISP), 2011 IEEE 7th International Symposium on Floriana, pp. 62–67 (2011)

  20. Le, P.Q., Iliyasu, A.M., Garcia, J.A., Dong, F., Hirota, K.: Representing visual complexity of images using a 3d feature space based on structure, noise, and diversity. JACIII 16(5), 631–640 (2012)

    Article  Google Scholar 

  21. Zhang, Y., Lu, K., Gao, Y., Xu, K.: A novel quantum representation for log-polar images. Quantum Inf. Process. 12(9), 3101–3126 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  22. Yuan, S., Mao, X., Xue, Y., Chen, L., Xiong, Q., Compare, A.: SQR: a simple quantum representation of infrared images. Quantum Inf. Process. 13(6), 1–27 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yan, F., Iliyasu, A.M., Venegas-Andraca, S.E.: A survey of quantum image representations. Quantum Inf. Process 15(1), 1–35 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Le, P.Q., Iliyasu, A.M., Dong, F.Y., Hirota, K.: Fast geometric transformations on quantum images. IAENG Int. J. Appl. Math. 40(3), 113–123 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Le, P.Q., Iliyasu, A.M., Dong, F.Y., Hirota, K.: Strategies for designing geometric transformations on quantum images. Theor. Comput. Sci. 412(15), 1406–1418 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Iliyasu, A.M., Le, P.Q., Dong, F.Y., Hirota, K.: Watermarking and authentication of quantum images based on restricted geometric transformations. Inf. Sci. 186(1), 126–149 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang, Y., Lu, K., Gao, Y., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(8), 2833–2860 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Vlasov, A.Y.: Quantum Computations and Image Recognition. arXiv: quant-ph/9703010 (1997)

  29. Beach, G., Lomont, C., Cohen, C.: Quantum image processing. In: Proceedings of The 2003 IEEE Workshop on Applied Imagery Pattern Recognition, pp. 39–44 (2003)

  30. Venegas-Andraca, S.E., Bose, S.: Quantum computation and image processing: new trends in artificial intelligence. In: Proceedings of the International Conference on Artificial Intelligence IJCAI-03, pp. 1563–1564 (2003)

  31. Venegas-Andraca, S.E., Bose, S.: Storing, processing and retrieving an image using quantum mechanics. In: Proceedings of the SPIE Conference Quantum Information and Computation, pp. 137–147 (2003)

  32. Akhshani, A., Akhavan, A., Lim, S.C., Hassan, Z.: An image encryption scheme based on quantum logistic map. Commun. Nonlinear Sci. Numer. Simulat. 17(12), 4653–4661 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Zhou, R.G., Wu, Q., Zhang, M.Q., Shen, C.Y.: Quantum image encryption and decryption algorithms based on quantum image geometric transformations. Int. J. Theor. Phys. 52(6), 1802–1817 (2013)

    Article  MathSciNet  Google Scholar 

  34. Abd El-Latif, A.A., Li, L., Wang, N., Han, Q., Niu, X.: A new approach to chaotic image encryption based on quantum chaotic system, exploiting color spaces. Signal Process. 93(11), 2986–3000 (2013)

    Article  Google Scholar 

  35. Jiang, N., Wang, L., Wu, W.Y.: Quantum Hilbert Image Scrambling. Int. J. Theor. Phys. 53(7), 2463–2484 (2014)

    Article  MATH  Google Scholar 

  36. Yang, Y.G., Xia, J., Jia, X., Zhang, H.: Novel image encryption/decryption based on quantum Fourier transform and double phase encoding. Quantum Inf. Process. 12(11), 3477–3493 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Jiang, N., Wu, W.Y., Wang, L.: The quantum realization of Arnold and Fibonacci image scrambling. Quantum Inf. Process. 13(5), 1223–1236 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Jiang, N., Wang, L.: Analysis and improvement of quantum Arnold and Fibonacci image scrambling. Quantum Inf. Process. 13(7), 1545–1551 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Hua, T.X., Chen, J., Pei, D.J., Zhang, W.Q., Zhou, N.R.: Quantum image encryption algorithm based on image correlation decomposition. Int. J. Theor. Phys. 54(2), 526–537 (2014)

    Article  MATH  Google Scholar 

  40. Zhou, N.R., Hua, T.X., Gong, L.H., Pei, D.J., Liao, Q.H.: Quantum image encryption based on generalized Arnold transform and double random-phase encoding. Quantum Inf. Process. 14(4), 1193–1213 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Yang, Y.G., Pan, Q.X., Sun, S.J., Xu, P.: Novel image encryption based on quantum walks. Sci. Rep. 5, 7784 (2015)

    Article  Google Scholar 

  42. Gong, L.H., He, X.T., Cheng, S., Hua, T.X., Zhou, N.R.: Quantum image encryption algorithm based on quantum image XOR operations. Int. J. Theor. Phys. 55(7):3234–3250 (2016)

  43. Arnold, V.I., Avez, A.: Ergodic Problems of Classical Mechanics. Benjamin, New York (1968)

    MATH  Google Scholar 

  44. Wang, X., Chen, F., Wang, T.: A new compound mode of confusion and diffusion for block encryption of image based on chaos. Commun. Nonlinear Sci. Numer. Simul. 15(9), 2479–2485 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Chen, J.X., Zhu, Z.L., Fu, C., Yu, H.: A fast image encryption scheme with a novel pixel swapping-based confusion approach. Nonlinear Dyn. 77(4), 1191–1207 (2014)

    Article  Google Scholar 

  46. Bhatnagar, G., Wu, Q.M.J., Raman, B.: Discrete fractional wavelet transform and its application to multiple encryption. Inf. Sci. 223, 297–316 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  47. Hennelly, B.M., Sheridan, J.T.: Image encryption and the fractional Fourier transform. In: International Society for Optics and Photonics, Ireland, pp. 126–137. (2003)

  48. Liu, Y., Wang, J., Fan, J., Gong, L.: Image encryption based on chaotic system and dynamic S-boxes composed of DNA sequences. Multimed. Tools Appl. 75, 4363–4382 (2016)

    Article  Google Scholar 

  49. Zhou, N.R., Yang, J.P., Tan, C.F., Zhou, Z.: Double-image encryption scheme combining DWT-based compressive sensing with discrete fractional random transform. Optics Commun. 354, 112–121 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61462061 and 61262084), the China Scholarship Council (Grant No. 201606825042), the Department of Human Resources and Social security of Jiangxi Province, the Major Academic Discipline and Technical Leader of Jiangxi Province (Grant No. 20162BCB22011), the Natural Science Foundation of Jiangxi Province, China in 2017 for L.H. Gong and the Opening Project of Shanghai Key Laboratory of Integrate Administration Technologies for Information Security (Grant No. AGK201602).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nanrun Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, N., Hu, Y., Gong, L. et al. Quantum image encryption scheme with iterative generalized Arnold transforms and quantum image cycle shift operations. Quantum Inf Process 16, 164 (2017). https://doi.org/10.1007/s11128-017-1612-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1612-0

Keywords

Navigation