Skip to main content
Log in

Good and asymptotically good quantum codes derived from algebraic geometry

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we construct several new families of quantum codes with good parameters. These new quantum codes are derived from (classical) t-point (\(t\ge 1\)) algebraic geometry (AG) codes by applying the Calderbank–Shor–Steane (CSS) construction. More precisely, we construct two classical AG codes \(C_1\) and \(C_2\) such that \(C_1\subset C_2\), applying after the well-known CSS construction to \(C_1\) and \(C_2\). Many of these new codes have large minimum distances when compared with their code lengths as well as they also have small Singleton defects. As an example, we construct a family \({[[46, 2(t_2 - t_1), d]]}_{25}\) of quantum codes, where \(t_1 , t_2\) are positive integers such that \(1<t_1< t_2 < 23\) and \(d\ge \min \{ 46 - 2t_2 , 2t_1 - 2 \}\), of length \(n=46\), with minimum distance in the range \(2\le d\le 20\), having Singleton defect at most four. Additionally, by applying the CSS construction to sequences of t-point (classical) AG codes constructed in this paper, we generate sequences of asymptotically good quantum codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Aly, S.A., Klappenecker, A.: On quantum and classical BCH codes. IEEE Trans. Inf. Theory 53(3), 1183–1188 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ashikhmin, A., Litsyn, S., Tsfasman, M.A.: Asymptotically good quantum codes. Phys. Rev. A 63(3), 032311 (2001)

    Article  ADS  Google Scholar 

  3. Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction via codes over \(GF(4)\). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, H.: Some good quantum error-correcting codes from algebraic-geometric codes. IEEE Trans. Inf. Theory 47(5), 2059–2061 (2001)

    Article  MATH  Google Scholar 

  5. Chen, H., Ling, S., Xing, C.: Asymptotically good quantum codes exceeding the Ashikhmin–Litsyn–Tsfasman bound. IEEE Trans. Inf. Theory 47(5), 2055–2058 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Edel, Y. Table of quantum twisted codes. http://www.mathi.uni-heidelberg.de/~yves/Matritzen/QTBCH/QTBCHIndex.html

  7. Garcia, A., Stichtenoth, H.: On the asymptotic behaviour of some towers of function fields over finite fields. J. Number Theory 61, 248–273 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Goppa, V.D.: Codes associated with divisors. Problemes Peredachi Informatsii (English translation in Problems Inform Transmission) 13, 33–39, 13, 22–27 (1977)

  9. Grassl, M., Geiselmann, W., Beth, T.: Quantum Reed–Solomon codes. AAECC-13 1709, 231–244 (1999)

    MathSciNet  MATH  Google Scholar 

  10. Jin, L.: Quantum stabilizer codes from maximal curves. IEEE Trans. Inf. Theory 60(1), 313–316 (2014)

    Article  MathSciNet  Google Scholar 

  11. Jin, L., Xing, C.: Euclidean and Hermitian self-orthogonal algebraic geometry codes and their application to quantum codes. IEEE Trans. Inf. Theory 58(8), 5484–5489 (2012)

    Article  Google Scholar 

  12. Ketkar, A., Klappenecker, A., Kumar, S., Sarvepalli, P.K.: Nonbinary stabilizer codes over finite fields. IEEE Trans. Inf. Theory 52(11), 4892–4914 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kim, J.L., Walker, J.: Nonbinary quantum error-correcting codes from algebraic curves. Discrete Math. 308, 3115–3124 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. La Guardia, G.G.: Constructions of new families of nonbinary quantum codes. Phys. Rev. A 80(4), 042331 (2009)

    Article  ADS  Google Scholar 

  15. La Guardia, G.G.: New quantum MDS codes. IEEE Trans. Inf. Theory 57(8), 5551–5554 (2011)

    Article  MathSciNet  Google Scholar 

  16. La Guardia, G.G.: Asymmetric quantum Reed–Solomon and generalized Reed–Solomon codes. Quantum Inf. Process. 11(2), 591–604 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. La Guardia, G.G.: Asymmetric quantum codes: new codes from old. Quantum Inf. Process. 12(8), 2771–2790 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. La Guardia, G.G.: On the construction of nonbinary quantum BCH codes. IEEE Trans. Inf. Theory 60(3), 1528–1535 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Matsumoto, R.: Improvement of Ashikhmin–Litsyn–Tsfasman bound for quantum codes. IEEE Trans. Inf. Theory 48(7), 2122–2124 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Munuera, C., Tenorio, W., Torres, F.: Quantum error-correcting codes from algebraic geometry codes of Castle type. Quantum Inf. Process. 15(10), 4071–4088 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  22. Niederreiter, H., Xing, C.: Algebraic Geometry in Coding Theory and Cryptography. Princeton University Press, Princeton (2009)

    MATH  Google Scholar 

  23. Steane, A.M.: Simple quantum error correcting-codes. Phys. Rev. A 54, 4741–4751 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Steane, A.M.: Enlargement of Calderbank–Shor–Steane quantum codes. IEEE Trans. Inf. Theory 45(7), 2492–2495 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Stichtenoth, H.: Transitive and self-dual codes attaining the Tsfasman–Vladut–Zink bound. IEEE Trans. Inf. Theory 52(5), 2218–2224 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Stichtenoth, H.: Algebraic Function Fields and Codes. Springer, Berlin (2009)

    MATH  Google Scholar 

Download references

Acknowledgements

This research has been partially supported by the Brazilian Agencies CAPES and CNPq. I would like to thank the anonymous referees for their valuable suggestions that improve significantly the quality of this paper. I also would like to thank the Editor-in-chief Yaakov S. Weinstein for his excellent work on the review process. This research has been partially supported by the Brazilian Agencies CAPES and CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuliano G. La Guardia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

La Guardia, G.G., Pereira, F.R.F. Good and asymptotically good quantum codes derived from algebraic geometry. Quantum Inf Process 16, 165 (2017). https://doi.org/10.1007/s11128-017-1618-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1618-7

Keywords