Abstract
A quantum Diesel cycle, which consists of one quantum isobaric process, one quantum isochoric process and two quantum adiabatic processes, is established with a two-level atom as working substance. The parameter R in this model is defined as the ratio of the time in quantum isochoric process to the timescale for the potential width movement. The positive work condition, power output and efficiency are obtained, and the optimal performance is analyzed with different R. The effects of dissipation, the mixed state in the cycle and the results of other working substances are also discussed at the end of this analysis.






Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Scovil, H.E.D., Schulz-DuBois, E.O.: Three-level masers as heat engines. Phys. Rev. Lett. 2, 262 (1959)
Geusic, J.E., Schulz-Du Bois, E.O., De Grasse, R.W., Scovil, H.E.D.: Three level spin refrigeration and maser action at 1500 mc/sec. J. Appl. Phys. 30, 1113 (1959)
Sakurai, J.J.: Modern Quantum Mechanics Revised Edition. Addison-Wesley Publishing Company, Boston (1994)
Quan, H.T., Liu, Y.X., Sun, C.P., Nori, F.: Quantum thermodynamic cycles and quantum heat engines. Phys. Rev. E 76, 031105 (2007)
Kieu, T.D.: The second law, Maxwell’s demon, and work derivable from quantum heat engines. Phys. Rev. Lett. 93, 140403 (2004)
Kieu, H.T.: Quantum heat engines, the second law and Maxwells demon. Eur. Phys. J. D 39, 115 (2006)
Quan, H.T.: Quantum thermodynamic cycles and quantum heat engines. II. Phys. Rev. E 79, 041129 (2009)
Alicki, R.: Quantum thermodynamics. An example of two-level quantum machine. Open. Syst. Inf. Dyn. 21, 1440002 (2014)
Wang, J., He, J., He, X.: Performance analysis of a two-state quantum heat engine working with a single-mode radiation field in a cavity. Phys. Rev. E 84, 041127 (2011)
Wang, J., He, J., He, X.: Quantum Otto engine of a two-level atom with single-mode fields. Phys. Rev. E 85, 041148 (2012)
Thomas, G., Johal, R.S.: Friction due to inhomogeneous driving of coupled spins in a quantum heat engine. Eur. Phys. J. B 87, 166 (2014)
Altintas, F., Hardal, A.Ü.C., Müstecapliog̃lu, Ö.E.: Quantum correlated heat engine with spin squeezing. Phys. Rev. E 90, 032102 (2014)
Henrich, M.J., Mahler, G., Michel, M.: Driven spin systems as quantum thermodynamic machines: fundamental limits. Phys. Rev. E 75, 051118 (2007)
Zhang, T., Liu, W.T., Chen, P.X., Li, C.Z.: Four-level entangled quantum heat engines. Phys. Rev. A 75, 062102 (2007)
Thomas, G., Johal, R.S.: Coupled quantum Otto cycle. Phys. Rev. E 83, 031135 (2011)
Huang, X.L., Liu, Y., Wang, Z., Niu, X.Y.: Special coupled quantum Otto cycles. Eur. Phys. J. Plus 129, 4 (2014)
Wang, J.H., Ye, Z.L., Lai, Y.M., Li, W.S., He, J.Z.: Efficiency at maximum power of a quantum heat engine based on two coupled oscillators. Phys. Rev. E 91, 062134 (2015)
Abah, O., Robnagel, J., Jacob, G., Deffner, S., Schmidt-Kaler, F., Singer, K., Lutz, E.: Single-Ion heat engine at maximum power. Phys. Rev. Lett. 109, 203006 (2012)
Altintas, F., Hardal, A.Ü.C., Müstecapliog̃lu, Ö.E.: Rabi model as a quantum coherent heat engine: from quantum biology to superconducting circuits. Phys. Rev. A 91, 023816 (2015)
Wang, H., Liu, S.Q., He, J.Z.: Thermal entanglement in two-atom cavity QED and the entangled quantum Otto engine. Phys. Rev. E 79, 041113 (2009)
Zagoskin, A.M., Savelev, S., Nori, F., Kusmartsev, F.V.: Squeezing as the source of inefficiency in the quantum Otto cycle. Phys. Rev. B 86, 014501 (2012)
Ma, J., Wang, X., Sun, C.P., Nori, F.: Quantum spin squeezing. Phys. Rep. 509, 86 (2011)
Lambert, N., Chen, Y.N., Cheng, Y.C., Li, C.M., Chen, G.Y., Nori, F.: Quantum biology. Nat. Phys. 9, 10 (2013)
Zagoskin, A.M., Il’ichev, E., McCutcheon, M.W., Young, J.F., Nori, F.: Controlled generation of squeezed states of microwave radiation in a superconducting resonant circuit. Phys. Rev. Lett. 101, 253602 (2008)
You, J.Q., Nori, F.: Atomic physics and quantum optics using superconducting circuits. Nature 474, 589 (2011)
You, J.Q., Nori, F.: Superconducting circuits and quantum information. Phys. Today 58, 42 (2005)
Scully, M.O., Zubairy, M.S., Agarwal, G.S., Walther, H.: Extracting work from a single heat bath via vanishing quantum coherence. Science 299, 862 (2003)
Huang, X.L., Wang, T., Yi, X.X.: Effects of reservoir squeezing on quantum systems and work extraction. Phys. Rev. E 86, 051105 (2012)
Robnagel, J., Abah, O., Schmidt-Kaler, F., Singer, K., Lutz, E.: Nanoscale heat engine beyond the Carnot limit. Phys. Rev. Lett. 112, 030602 (2014)
Manzano, G., Galve, F., Zambrini, R., Parrondo, J.M.R.: Entropy production and thermodynamic power of the squeezed thermal reservoir. Phys. Rev. E 93, 052120 (2016)
Zhang, X.Y., Huang, X.L., Yi, X.X.: Quantum Otto heat engine with a non-Markovian reservoir. J. Phys. A 47, 455002 (2014)
Huang, X.L., Wang, L.C., Yi, X.X.: Quantum Brayton cycle with coupled systems as working substance. Phys. Rev. E 87, 012144 (2013)
Maruyama, K., Nori, F., Vedral, V.: The physics of Maxwell’s demon and information. Rev. Mod. Phys. 81, 1 (2009)
Quan, H.T., Wang, Y.D., Liu, Y.X., Sun, C.P., Nori, F.: Maxwell’s demon assisted thermodynamic cycle in superconducting quantum circuits. Phys. Rev. Lett. 97, 180402 (2006)
Grajcar, M., Ashhab, S., Johansson, J.R., Nori, F.: Lower limit on the achievable temperature in resonator-based sideband cooling. Phys. Rev. B 78, 035406 (2008)
Levy, A., Alicki, R., Kosloff, R.: Quantum refrigerators and the third law of thermodynamics. Phys. Rev. E 85, 061126 (2012)
Sørdal, V.B., Bergli, J., Galperin, Y.M.: Cooling by heating: restoration of the third law of thermodynamics. Phys. Rev. E 93, 032102 (2016)
Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge (1997)
Esposito, M., Kawai, R., Lindenberg, K.: Efficiency at maximum power of low-dissipation Carnot engines. Phys. Rev. Lett. 105, 150603 (2010)
de Tomás, C., Hernández, A.C., Roco, J.M.M.: Optimal low symmetric dissipation Carnot engines and refrigerators. Phys. Rev. E 85, 010104 (2012)
Guo, J., Wang, J., Wang, Y., Chen, J.: Universal efficiency bounds of weak-dissipative thermodynamic cycles at the maximum power output. Phys. Rev. E 87, 012133 (2013)
Muñoz, E., Peña, F.J.: Quantum heat engine in the relativistic limit: the case of a Dirac particle. Phys. Rev. E 86, 061108 (2012)
Wang, J.H., He, J.Z.: Phase transitions for an ideal Bose condensate trapped in a quartic potential. Eur. Phys. J. D 64, 73 (2011)
Acknowledgements
This work is supported by NSF of China under Grant Nos. 61475033, 11605024 and 11105064 and the Foundation of Department of Education of Liaoning Province (L201683664).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Huang, X.L., Shang, Y.F., Guo, D.Y. et al. Performance analysis of quantum Diesel heat engines with a two-level atom as working substance. Quantum Inf Process 16, 174 (2017). https://doi.org/10.1007/s11128-017-1624-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-017-1624-9