Abstract
As a typical quantum cryptographic task between distrustful participants, quantum private comparison (QPC) has attracted a lot of attention in recent years. Here we propose two QPC protocols employing single-photon interference, a typical and interesting technology for quantum communications. Compared with the previous QPC protocols employing normal single states or entangled states, the proposed protocols achieve lower communication complexity utilizing the characteristics of single-photon interference. And we also proved the security of the proposed protocols in theory.


Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
Single-photon interference is a typical and important technology of quantum communication. Utilizing such technology, people designed many interesting protocols, for example, the first QKD protocol by orthogonal state encoding [6], the counterfactual QKD protocol where the secret is generated when no photons have been transmitted from one participant to the other [7], the QKD protocol without monitoring signal disturbance [8], and so on [24, 52].
References
Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring, In: Proceedings of 35th Annual Symposium on the Foundations of Computer Science, Santa Fe, New Mexico, pp. 124–134 (1994)
“Quantum Chaos: After a Failed Speed Test, the D-Wave Debate Continues”. Scientific American. 2014-06-19
Gisin, N., Ribordy, G.G., Tittle, W.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)
Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal, Bangalore, pp. 175–179 (1984)
Ekert, A.K.: Quantum cryptography based on Bell theorem. Phys. Rev. Lett. 67, 661–663 (1991)
Goldenberg, L., Vaidman, L.: Quantum cryptography based on orthogonal states. Phys. Rev. Lett. 75, 1239–1243 (1995)
Noh, T.-G.: Counterfactual quantum cryptography. Phys. Rev. Lett. 103, 230501 (2009)
Sasaki, T., Yamamoto, Y., Koashi, M.: Practical quantumkey distribution protocol without monitoring signal disturbance. Nature 509, 475–479 (2014)
Liu, B., Gao, F., Qin, S.-J., et al.: Choice of measurement as the secret. Phys. Rev. A 89, 042318 (2014)
Long, G.-L., Liu, X.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)
Deng, F.G., Long, G.L.: Controlled order rearrangement encryption for quantum key distribution. Phys. Rev. A 68, 042315 (2003)
Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)
Gao, F., Qin, S.-J., Wen, Q.-Y., Zhu, F.-C.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger–Horne–Zeilinger state. Opt. Commun. 283, 192 (2010)
Huang, W., Wen, Q.-Y., Jia, H.-Y., Qin, S.-J., Gao, F.: Fault tolerant quantum secure direct communication with quantum encryption against collective noise. Chin. Phys. B 21(10), 100308 (2012)
Malaney, R.A.: Location-dependent communications using quantum entanglement. Phys. Rev. A 81, 042319 (2010)
Buhrman, H., et al.: Position-based quantum cryptography: impossibility and constructions. In: Rogaway P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 429–446. Springer, Heidelberg (2011). Full version is arXiv:1009.2490v4 [quant-ph]
Brassard, G.: The conundrum of secure positioning. Nature 479, 307 (2011)
Gao, F., Liu, B., Wen, Q.-Y.: Quantum position verification in bounded-attack-frequency model. Sci. China Phys. Mech. Astron. 59, 110331 (2016)
Nayak, A.: Bit-commitment-based quantum coin flipping. Phys. Rev. A 67, 012304–012314 (2003)
Barrett, J., Massar, S.: Quantum coin tossing and bit-string generation in the presence of noise. Phys. Rev. A 69(2), 577–580 (2004)
Giovannetti, V., Lloyd, S., Maccone, L.: Quantum private queries. Phys. Rev. Lett. 100, 230502 (2008)
Jakobi, M., Simon, C., Gisin, N., et al.: Practical private database queries based on a quantum-key-distribution protocol. Phys. Rev. A 83, 022301 (2011)
Gao, F., Liu, B., Huang, W., Wen, Q.Y.: Postprocessing of the oblivious key in quantum private query. IEEE J. Sel. Top. Quantum Electron. 21(3), 6600111 (2015)
Liu, B., Gao, F., Huang, W., et al.: QKD-based quantum private query without a failure probability. Sci. China Phys. Mech. Astron. 58, 100301 (2015)
Liu, B., Gao, F., Huang, W., Li, D., Wen, Q.-Y.: Controlling the key by choosing the detection bits in quantum cryptographic protocols. Sci. China Inf. Sci. 58(11), 112110 (2015)
Yang, Y.-G., Wen, Q.-Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A: Math. Theor. 42, 055305 (2009)
Yang, Y.-G., Cao, W.-F., Wen, Q.Y.: Secure quantum private comparison. Phsy. Scr. 80, 065002 (2009)
Chen, X.-B., Xu, G., Niu, X.-X., Wen, Q.-Y., Yang, Y.X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun. 283, 1161–1165 (2009)
Liu, W., Wang, Y.-B., Jiang, Z.-T.: An efficient protocol for the quantum private comparison of equality with W state. Opt. Commun. 284, 3160–3163 (2011)
Tseng, H.-Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf. Process. 11(2), 373–384 (2012)
Chang, C.-H., Hwang, T., Gope, P.: An efficient quantum private comparison of equality over collective-noise channels. Int. J. Theor. Phys. 55(4), 2125-38 (2016)
Chen, X.-B., Dou, Z., Xu, G., Wang, C., Yang, Y.X.: A class of protocols for quantum private comparison based on the symmetry of states. Quantum Inf. Process. 13(1), 85–100 (2014)
Chen, X.-B., Su, Y., Niu, X.-X., Yang, Y.-X.: Efficient and feasible quantum private comparison of equality against the collective amplitude damping noise. Quantum Inf. Process. 13(1), 101–112 (2014)
Guo, F.-Z., Gao, F., Qin, S.-J., Zhang, J., Wen, X.-Y.: Quantum private comparison protocol based on entanglement swapping of d-level Bell states. Quantum Inf. Process. 12(8), 2793–2802 (2013)
He, G.P.: Comment on quantum private comparison of equality protocol without a third party. Quantum Inf. Process. 14(6), 2301–2305 (2015)
Huang, S.L., Hwang, T., Gope, P.: Multi-party quantum private comparison with an almost-dishonest third party. Quantum Inf. Process. 14(11), 4225–4235 (2015)
Huang, S.L., Hwang, T., Gope, P.: Multi-party quantum private comparison protocol with an almost-dishonest third party using GHZ states. Int. J. Theor. Phys. 55(6), 2969–2976 (2016)
Huang, W., Wen, Q.-Y., Liu, B., Gao, F., Sun, Y.: Robust and efficient quantum private comparison of equality with collective detection over collective-noise channels. Sci. China Phys. Mech. Astron. 56(9), 1670–1678 (2013)
Ji, S., F., Wang, W.J., Liu, Yuan, X.M.: Twice-Hadamard-CNOT attack on Li et al.’s fault-tolerant quantum private comparison and the improved scheme. Front. Phys. 10(2), 192–197 (2015)
Ji, Z.X., Ye, T.Y.: Quantum private comparison of equal information based on highly entangled six-qubit genuine state. Commun. Theor. Phys. 65(6), 711–715 (2016)
Li, J., Jia, L., Zhou, H.F., Zhang, T.T.: Secure quantum private comparison protocol based on the entanglement swapping between three-particle W-class state and bell state. Int. J. Theor. Phys. 55(3), 1710–1718 (2016)
Li, Y.B., Ma, Y.J., Xu, S.W., Huang, W., Zhang, Y.S.: Quantum private comparison based on phase encoding of single photons. Int. J. Theor. Phys. 53(9), 3191–3200 (2014)
Li, Y.B., Qin, S.J., Yuan, Z., Huang, W., Sun, Y.: Quantum private comparison against decoherence noise. Quantum Inf. Process. 12(6), 2191–2205 (2013)
Li, Y.B., Wang, T.Y., Chen, H.Y., Li, M.D., Yang, Y.T.: Fault-tolerate quantum private comparison based on GHZ states and ECC. Int. J. Theor. Phys. 52(8), 2818–2825 (2013)
Lin, J.S., Yang, C.W., Hwang, T.: Quantum private comparison of equality protocol without a third party. Quantum Inf. Process. 13(2), 239–247 (2014)
Lin, S., Guo, G.D., Liu, X.F.: Quantum private comparison of equality with \(\chi \)-type entangled states. Int. J. Theor. Phys. 52(11), 4185–4194 (2013)
Lin, S., Sun, Y., Liu, X.F., Yao, Z.Q.: Quantum private comparison protocol with d-dimensional Bell states. Quantum Inf. Process. 12(1), 559–568 (2013)
Liu, W., Wang, Y.B., Wang, X.M.: Multi-party quantum private comparison protocol using d-dimensional basis states without entanglement swapping. Int. J. Theor. Phys. 53(4), 1085–1091 (2014)
Liu, B., Gao, F., Jia, H.Y., Huang, W., Zhang, W.W., Wen, Q.Y.: Efficient quantum private comparison employing single photons and collective detection. Quantum Inf. Process. 12(2), 887–897 (2013)
He, G.P.: Simple quantum protocols for the millionaire problem with a semi-honest third party. Int J Quantum Inf. 11(02), 289–300 (2013)
Yao, A.C.: Protocols for secure computations. In: Proceedings of 23rd IEEE Symposium on Foundations of Computer Science (FOCS 82), Washington, DC (1982)
Xu, S.W., Sun, Y., Lin, S.: Quantum private query based on single-photon interference. Quantum Inf. Process. 15(8), 3301–3310 (2016)
Acknowledgements
This work is supported by the National Postdoctoral Program for Innovative Talents under Grant No. BX201600199, China Postdoctoral Science Foundation funded project under Grant No. 2017M612912, the Fundamental Research Funds for the Central Universities under Grant Nos. 0216005202066, Sichuan Youth Science and Technology Foundation under Grant No. 2017JQ0045, National Natural Science Foundation of China under Grant Nos. 61572089, 61309029, 61502200, the Natural Science Foundation of Guangdong Province under Grant No. 2014A030310245.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Liu, B., Xiao, D., Huang, W. et al. Quantum private comparison employing single-photon interference. Quantum Inf Process 16, 180 (2017). https://doi.org/10.1007/s11128-017-1630-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-017-1630-y