Skip to main content

Advertisement

Log in

Multi-party semi-quantum key distribution-convertible multi-party semi-quantum secret sharing

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

This paper proposes a multi-party semi-quantum secret sharing (MSQSS) protocol which allows a quantum party (manager) to share a secret among several classical parties (agents) based on GHZ-like states. By utilizing the special properties of GHZ-like states, the proposed scheme can easily detect outside eavesdropping attacks and has the highest qubit efficiency among the existing MSQSS protocols. Then, we illustrate an efficient way to convert the proposed MSQSS protocol into a multi-party semi-quantum key distribution (MSQKD) protocol. The proposed approach is even useful to convert all the existing measure–resend type of semi-quantum secret sharing protocols into semi-quantum key distribution protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829–1834 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  2. Guo, G.P., Guo, G.C.: Quantum secret sharing without entanglement. Phys. Lett. A 310(4), 247–251 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Li, Y., Zhang, K., Peng, K.: Multiparty secret sharing of quantum information based on entanglement swapping. Phys. Lett. A 324(5–6), 420–424 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Deng, F.G., Long, G.L., Zhou, H.Y.: An efficient quantum secret sharing scheme with Einstein–Podolsky–Rosen pairs. Phys. Lett. A 340(1–4), 43–50 (2005)

    Article  ADS  MATH  Google Scholar 

  5. Hsu, L.Y., Li, C.M.: Quantum secret sharing using product states. Phys. Rev. A 71(2), 022321 (2005)

    Article  ADS  Google Scholar 

  6. Zhang, Z.J., Man, Z.X.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72(2), 022303 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  7. Deng, F.G., Li, X.H., Zhou, H.Y.: Efficient high-capacity quantum secret sharing with two-photon entanglement. Phys. Lett. A 372(12), 1957–1962 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Gu, B., Li, C.Q., Xu, F., Chen, Y.L.: High-capacity three-party quantum secret sharing with superdense coding. Chin. Phys. B 18(11), 4690–4694 (2009)

    Article  ADS  Google Scholar 

  9. Sun, Y., Wen, Q.Y., Gao, F., Chen, X.B., Zhu, F.C.: Multiparty quantum secret sharing based on Bell measurement. Opt. Commun. 282(17), 3647–3651 (2009)

    Article  ADS  Google Scholar 

  10. Gu, B., Mu, L.L., Ding, L.G., Zhang, C.Y., Li, C.Q.: Fault tolerant three-party quantum secret sharing against collective noise. Opt. Commun. 283(15), 3099–3103 (2010)

    Article  ADS  Google Scholar 

  11. Hsieh, C.R., Tasi, C.W., Hwang, T.: Quantum secret sharing using GHZ-like state. Commun. Theor. Phys. 54(6), 1019–1022 (2010)

    Article  MATH  Google Scholar 

  12. Shi, R.H., Huang, L.S., Yang, W., Zhong, H.: Multiparty quantum secret sharing with Bell states and Bell measurements. Opt. Commun. 283(11), 2476–2480 (2010)

    Article  ADS  Google Scholar 

  13. Hwang, T., Hwang, C.C., Li, C.M.: Multiparty quantum secret sharing based on GHZ states. Phys. Scr. 83(4), 045004 (2011)

    Article  ADS  MATH  Google Scholar 

  14. Lin, J., Hwang, T.: An enhancement on Shi et al.’s multiparty quantum secret sharing protocol. Opt. Commun. 284(5), 1468–1471 (2011)

    Article  ADS  Google Scholar 

  15. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical Bob. Phys. Rev. Lett. 99(14), 140501 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179. IEEE Press, Bangalore (1984)

  17. Boyer, M., Gelles, R., Kenigsberg, D., Mor, T.: Semiquantum key distribution. Phys. Rev. A 79(3), 032341 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Zou, X., Qiu, D., Li, L., Wu, L., Li, L.: Semiquantum-key distribution using less than four quantum states. Phys. Rev. A 79(5), 052312 (2009)

    Article  ADS  Google Scholar 

  19. Xian-Zhou, Z., Wei-Gui, G., Yong-Gang, T., Zhen-Zhong, R., Xiao-Tian, G.: Quantum key distribution series network protocol with M-classical Bobs. Chin. Phys. B 18(6), 2143 (2009)

    Article  ADS  Google Scholar 

  20. Jian, W., Sheng, Z., Quan, Z., Chao-Jing, T.: Semiquantum key distribution using entangled states. Chin. Phys. Lett. 28(10), 100301 (2011)

    Article  Google Scholar 

  21. Yu, K.F., Yang, C.W., Liao, C.H., Hwang, T.: Authenticated semi-quantum key distribution protocol using Bell states. Quantum Inf. Process. 13(6), 1457–1465 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  22. Wang, J., Zhang, S., Zhang, Q., Tang, C.-J.: Semiquantum secret sharing using two-particle entangled state. Int. J. Quantum Inf. 10(05), 1250050 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, L., Qiu, D., Mateus, P.: Quantum secret sharing with classical Bobs. J. Phys. A Math. Theor. 46(4), 045304 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Li, Q., Chan, W., Long, D.-Y.: Semiquantum secret sharing using entangled states. Phys. Rev. A 82(2), 022303 (2010)

    Article  ADS  Google Scholar 

  25. Yang, C.-W., Hwang, T.: Efficient key construction on semi-quantum secret sharing protocols. Int. J. Quantum Inf. 11(05), 1350052 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Yang, K., Huang, L.S., Yang, W., Song, F.: Quantum teleportation via GHZ-like state. Int. J. Theor. Phys. 48(2), 516–521 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tsai, C.W., Hwang, T.: Teleportation of a pure EPR state via GHZ-like state. Int. J. Theor. Phys. 49(8), 1969–1975 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Tsai, C.W., Hwang, T.: Entanglement swapping of a GHZ state via a GHZ-like state. Phys. Scr. 84(4), 045006 (2011)

    Article  ADS  MATH  Google Scholar 

  29. Hung, S.-M., Hwang, S.-L., Hwang, T., Kao, S.-H.: Multiparty quantum private comparison with almost dishonest third parties for strangers. Quantum Inf. Process. 16(2), 36 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  30. Deutsch, D., Ekert, A., Jozsa, R., Macchiavello, C., Popescu, S., Sanpera, A.: Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys. Rev. Lett. 77(13), 2818 (1996)

    Article  ADS  Google Scholar 

  31. Yang, C.-W., Hwang, T., Luo, Y.-P.: Enhancement on “quantum blind signature based on two-state vector formalism”. Quantum Inf. Process. 12(1), 109–117 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Yang, C.-W., Hwang, T.: Quantum dialogue protocols immune to collective noise. Quantum Inf. Process. 12(6), 2131–2142 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Yang, C.-W., Hwang, T.: Improved QSDC protocol over a collective-dephasing noise channel. Int. J. Theor. Phys. 51(12), 3941–3950 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Xie, C., Li, L., Qiu, D.: A novel semi-quantum secret sharing scheme of specific bits. Int. J. Theor. Phys. 54(10), 3819–3824 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Deng, F.G., Zhou, P., Li, X.H., Li, C.Y., Zhou, H.Y.: Robustness of two-way quantum communication protocols against Trojan horse attack. Quantum Phys. (2005). arXiv:quant-ph/0508168

  36. Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351(1–2), 23–25 (2006)

    Article  ADS  MATH  Google Scholar 

  37. Yang, C.W., Hwang, T., Luo, Y.P.: Enhancement on quantum blind signature based on two-state vector formalism. Quantum Inf. Process. 12(1), 109–117 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72(4), 044302 (2005)

    Article  ADS  Google Scholar 

  39. Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74(5), 054302 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank the Ministry of Science and Technology of the Republic of China, Taiwan, for partially supporting this research in finance under the Contract No. MOST 105-2221-E-006 -162 -MY2 .

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzonelih Hwang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, KF., Gu, J., Hwang, T. et al. Multi-party semi-quantum key distribution-convertible multi-party semi-quantum secret sharing. Quantum Inf Process 16, 194 (2017). https://doi.org/10.1007/s11128-017-1631-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1631-x

Keywords

Navigation