Abstract
We propose a new way for quantifying entanglement of multipartite entangled states which have a symmetrical structure and can be expressed as valence-bond-solid states. We put forward a new concept ‘unit.’ The entangled state can be decomposed into a series of units or be reconstructed by multiplying the units successively, which simplifies the analyses of multipartite entanglement greatly. We compute and add up the generalized concurrence of each unit to quantify the entanglement of the whole state. We verify that the new method coincides with concurrence for two-partite pure states. We prove that the new method is a good entanglement measure obeying the three necessary conditions for all good entanglement quantification methods. Based on the method, we compute the entanglement of multipartite GHZ, cluster and AKLT states.




Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Schrödinger, E.: Discussion of probability relations between separated systems. Math. Proc. Camb. 31(4), 555–563 (1935)
Genovese, M.: Research on hidden variable theories: a review of recent progresses. Phys. Rep. 413(6), 319–396 (2007)
Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., Wehner, S.: Bell nonlocality. Rev. Mod. Phys. 86(2), 419–478 (2014)
Bell, J.S.: On the Einstein–Podolsky–Rosen paradox. Physics 1, 195–200 (1965)
Hensen, B., Bernien, H., Drau, A.E., Reiserer, A., Kalb, N., Blok, M.S., et al.: Loophole-free bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526(7575), 682–6 (2015)
Shalm, L.K., Meyerscott, E., Christensen, B.G., Bierhorst, P., Wayne, M.A., Stevens, M.J., et al.: Strong loophole-free test of local realism. Phys. Rev. Lett. 115, 250402 (2015)
Giustina, M., Versteegh, M.A., Wengerowsky, S., Handsteiner, J., Hochrainer, A., Phelan, K., et al.: Significant-loophole-free test of Bell’s theorem with entangled photons. Phys. Rev. Lett. 115, 250401 (2015)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Physics 74(1), 145–195 (2001)
Acn, A., Cirac, J.I., Lewenstein, M.: Entanglement percolation in quantum networks. Nat. Phys. 3(4), 256–259 (2006)
Bennett, C.H., Divincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54(5), 3824–3851 (1996)
Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys. 80(2), 517–576 (2008)
Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81(2), 865–942 (2007)
Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53(4), 2046–2052 (1996)
Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80(10), 2245–2248 (1997)
Pan, F., Liu, D., Lu, G., Draayer, J.P.: Simple entanglement measure for multipartite pure states. Int. J. Theor. Phys. 43(5), 1241–1247 (2004)
yczkowski, K., Horodecki, P., Sanpera, A., Lewenstein, M.: Volume of the set of separable states. Phys. Rev. A 60(2), 883–892 (1998)
Barnum, H., Linden, N.: Monotones and invariants for multi-particle quantum states. J. Phys. A Gen. Phys. 34(35), 6787–6805 (2001)
Vedral, V.: The role of relative entropy in quantum information theory. Rev. Mod. Phys. 74(1), 197–234 (2001)
Eisert, J., Briegel, H.J.: Schmidt measure as a tool for quantifying multiparticle entanglement. Phys. Rev. A 64(2), 17–18 (2001)
Huang, Y., Qiu, D.: Concurrence vectors of multipartite states based on coefficient matrices. Quantum Inf. Process. 11(1), 235–254 (2012)
Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86(22), 5188–91 (2001)
Raussendorf, R., Harrington, J.: Fault-tolerant quantum computation with high threshold in two dimensions. Phys. Rev. Lett. 98(19), 190504–190504 (2007)
Verstraete, F., Martn-Delgado, M.A., Cirac, J.I.: Diverging entanglement length in gapped quantum spin systems. Phys. Rev. Lett. 92(8), 087201 (2004)
Vedral, V., Plenio, M.B., Rippin, M.A., Knight, P.L.: Quantifying entanglement. Phys. Rev. Lett. 78(12), 2275–2279 (1997)
Affleck, I., Kennedy, T., Lieb, E.H.: Valence bond ground states in isotropic quantum antiferromagnets. Commun. Math. Phys. 115(3), 477–528 (1988)
Albeverio, S., Fei, S.M.: A note on invariants and entanglements. J Opt. B Quantum Semiclass. Opt. 3(4), 223–227(5) (2001)
Acknowledgements
This work is supported by the Natural Science Foundation of Shandong Province (Nos. ZR2014AQ026, ZR2014AM023) and the National Science Foundation of China (Grant Nos. 61575180, 11475160, 61640009).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Su, PY., Li, WD., Ma, XP. et al. A new method for quantifying entanglement of multipartite entangled states. Quantum Inf Process 16, 190 (2017). https://doi.org/10.1007/s11128-017-1632-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-017-1632-9