Abstract
We investigate quantum-memory-assisted entropic uncertainty relations (EURs) based on weak measurements. It is shown that the lower bound of EUR revealed by weak measurements is always larger than that revealed by the corresponding projective measurements. A series of lower bounds of EUR under both weak measurements and projective measurements are presented. Interestingly, the quantum-memory-assisted EUR based on weak measurements is a monotonically decreasing function of the strength parameter. Furthermore, some information-theoretic inequalities associated with weak measurements are also derived.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Heisenberg, W.: Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. 43, 172 (1927). English translation in: Wheeler, J.A., Zurek, W.H. (eds.) Quantum Theory and Measurement, pp. 62–84. Princeton University Press, Princeton (1983)
Robertson, H.P.: The uncertainty principle. Phys. Rev. 34, 163 (1929)
Deutsch, D.: Uncertainty in quantum measurements. Phys. Rev. Lett. 50, 631 (1983)
Maassen, H., Uffink, J.B.M.: Generalized entropic uncertainty relations. Phys. Rev. Lett. 60, 1103 (1988)
Tomamichel, M., Renner, R.: Uncertainty relation for smooth entropies. Phys. Rev. Lett. 106, 110506 (2011)
Birula, I.B.: Formulation of the uncertainty relations in terms of the Rényi entropies. Phys. Rev. A 74, 052101 (2006)
Zozor, S., Vignat, C.: On classes of non-Gaussian asymptotic minimizers in entropic uncertainty principles. Phys. A 375, 499 (2007)
Bosyk, G.M., Portesi, M., Plastino, A.: Collision entropy and optimal uncertainty. Phys. Rev. A 85, 012108 (2012)
Luis, A.: Effect of fluctuation measures on the uncertainty relations between two observables: different measures lead to opposite conclusions. Phys. Rev. A 84, 034101 (2011)
Wilk, G., Wlodarczyk, Z.: Uncertainty relations in terms of the Tsallis entropy. Phys. Rev. A 79, 062108 (2009)
Birula, I.B., Rudnicki, L.: Comment on “Uncertainty relations in terms of the Tsallis entropy”. Phys. Rev. A 81, 026101 (2010)
Wehner, S., Winter, A.: Entropic uncertainty relations—a survey. New. J. Phys. 12, 025009 (2010)
Berta, M., Chrisandl, M., Colbeck, R., Renes, J.M., Renner, R.: The uncertainty principle in the presence of quantum memory. Nat. Phys. 6, 659 (2010)
Renes, J.M., Boileau, J.C.: Conjectured strong complementary information tradeoff. Phys. Rev. Lett. 103, 020402 (2009)
Coles, P.J., Yu, L., Gheorghiu, V., Griffiths, R.B.: Information-theoretic treatment of tripartite systems and quantum channels. Phys. Rev. A 83, 062338 (2011)
Krishna, M., Parthasarathy, K.R.: An entropic uncertainty principle for quantum measurements. Sankhya Indian J. Stat. Ser. A 64, 842 (2002)
Pati, A.K., Wilde, M.M., Devi, A.R.U., Rajagopal, A.K.: Quantum discord and classical correlation can tighten the uncertainty principle in the presence of quantum memory. Sudha Phys. Rev. A 86, 042105 (2012)
Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)
Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A Math. Theor. 34, 6899 (2001)
Modi, K., et al.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)
Aharonov, Y., Albert, D.Z., Vaidman, L.: How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60, 1351 (1988)
Oreshkov, O., Brun, T.A.: Weak measurements are universal. Phys. Rev. Lett. 95, 110409 (2005)
Hosten, O., Kwiat, P.: Observation of the spin Hall effect of light via weak measurements. Science 319, 787 (2008)
Lundeen, J.S., et al.: Direct measurement of the quantum wavefunction. Nature 474, 188 (2011)
Bernardo, B.D.L., Martins, W.S., Azevedo, S., Rosas, A.: Uncertainty control and precision enhancement of weak measurements in the quadratic regime. Phys. Rev. A 92, 012109 (2015)
Parks, A.D., Gray, J.E.: Variance control in weak-value measurement pointers. Phys. Rev. A 84, 012116 (2011)
Rozema, L.A., Darabi, A., Mahler, D.H., Hayat, A., Soudagar, Y., Steinberg, A.M.: Violation of Heisenberg’s measurement-disturbance relationship by weak measurements. Phys. Rev. Lett. 109, 100404 (2012)
Singh, U., Pati, A.: Quantum discord with weak measurements. Ann. Phys. 343, 141 (2014)
Coles, P. J., Yu, L., Zwolak, M. Relative entropy derivation of the uncertainty principle with quantum side information. arXiv:1105.4865
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Peres, A.: Neumark’s theorem and quantum inseparability. Found. Phys. 20, 1441 (1990)
Jozsa, R., koashi, M., Linden, N., Popescu, S., Presnell, S., Shepherd, D., Winter, A.: Entanglement cost of generalised measurements. arXiv:quant-ph/0303167
Singh, U., Pati, A. Weak measurement induced super discord can resurrect lost quantumness. arXiv:1305.4393
Han, W., et al.: Enhancing entanglement trapping by weak measurement and quantum measurement reversal. arXiv:1309.6759
Wang, Y.K., et al.: Super-quantum correlation and geometry for Bell-diagonal states with weak measurements. Quantum Inf. Process. 13, 283 (2014)
Li, B., Chen, L., Fan, H.: Non-zero total correlation means non-zero quantum correlation. Phys. Lett. A 378, 1249 (2014)
Acknowledgements
This research was supported by the grants from the Natural Science Foundation of China (11571220) and (11105226); the Natrual Science Foundation of Shandong Province (ZR2016AM23); the Fundamental Research Funds for the Central Universities Nos. (15CX02075A) and (15CX05062A); Macao Science and Technology Development Fund No. (003/2015/A1).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Li, L., Wang, QW., Shen, SQ. et al. Quantum-memory-assisted entropic uncertainty relations under weak measurements. Quantum Inf Process 16, 188 (2017). https://doi.org/10.1007/s11128-017-1638-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-017-1638-3