Skip to main content
Log in

One-step quantum phase gate in the ultrastrong coupling regime of circuit QED

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In a previous publication (Phys Rev Lett 108: 120501, 2012), Romero et al. proposed an ultrastrong coupling circuit QED system that can implement a two-qubit quantum phase gate with four controlling pulses. Based on this architecture, we demonstrate that an ultrafast two-qubit phase gate can also be realized with only one oscillation and lower coupling strengths. In our operation scheme, two identical qubits evolve synchronously under a single pulse with a duration determined by a specific coupling strength. The phase gate can also be obtained periodically. The influences of parameter fluctuations are estimated. We demonstrate that the fidelities can be greater than 99% if the parameter fluctuations are controlled within 5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Wallraff, A., Schuster, D.I., Blais, A., Frunzio, L., Huang, R.S., Majer, J., Schoelkopf, R.J.: Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162 (2004)

    Article  ADS  Google Scholar 

  2. Ladd, T.D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., O’Brien, J.L.: Quantum computers. Nature 464, 45 (2010)

    Article  ADS  Google Scholar 

  3. Buluta, I., Ashhab, S., Nori, F.: Natural and artificial atoms for quantum computation. Rep. Prog. Phys. 74, 104401 (2011)

    Article  ADS  Google Scholar 

  4. Xiang, Z.L., Ashhab, S., You, J.Q., Nori, F.: Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems. Rev. Mod. Phys. 85, 623 (2013)

    Article  ADS  Google Scholar 

  5. Mirza, I.M., van Enk, S.J., Kimble, H.J.: Single-photon time-dependent spectra in coupled cavity arrays. JOSA B 30, 2640 (2013)

    Article  ADS  Google Scholar 

  6. Mirza, I.M., van Enk, S.J.: How nonlinear optical effects degrade Hong-Ou-Mandel like interference. Opt. Commun. 343, 172 (2015)

    Article  ADS  Google Scholar 

  7. Liu, Y.X., You, J.Q., Wei, L.F., Sun, C.P., Nori, F.: Optical selection rules and phase-dependent adiabatic state control in a superconducting quantum circuit. Phys. Rev. Lett. 95, 087001 (2005)

    Article  ADS  Google Scholar 

  8. You, J.Q., Nori, F.: Atomic physics and quantum optics using superconducting circuits. Nature 474, 589 (2011)

    Article  ADS  Google Scholar 

  9. Liu, X., Liao, Q.H., Xu, X.X., Fang, G.Y., Liu, S.T.: One-step schemes for multiqubit GHZ states and W-class states in circuit QED. Opt. Commun. 359, 359 (2016)

    Article  ADS  Google Scholar 

  10. Tanamoto, T., Liu, Y.X., Fujita, S., Hu, X., Nori, F.: Producing cluster states in charge qubits and flux qubits. Phys. Rev. Lett. 97, 230501 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. You, J.Q., Wang, X.B., Tanamoto, T., Nori, F.: Efficient one-step generation of large cluster states with solid-state circuits. Phys. Rev. A 75, 052319 (2007)

    Article  ADS  Google Scholar 

  12. Tanamoto, T., Maruyama, K., Liu, Y.X., Hu, X., Nori, F.: Efficient purification protocols using iSWAP gates in solid-state qubits. Phys. Rev. A 78, 062313 (2008)

    Article  ADS  Google Scholar 

  13. Tanamoto, T., Liu, Y.X., Hu, X., Nori, F.: Efficient quantum circuits for one-way quantum computing. Phys. Rev. Lett. 102, 100501 (2009)

    Article  ADS  Google Scholar 

  14. Peropadre, B., Forn-Díaz, P., Solano, E., García-Ripoll, J.J.: Switchable ultrastrong coupling in circuit QED. Phys. Rev. Lett. 105, 023601 (2010)

    Article  ADS  Google Scholar 

  15. Forn-Díaz, P., Lisenfeld, J., Marcos, D., García-Ripoll, J.J., Solano, E., Harmans, C.J.P.M., Mooij, J.E.: Observation of the Bloch-Siegert shift in a qubit-oscillator system in the ultrastrong coupling regime. Phys. Rev. Lett. 105, 237001 (2010)

    Article  ADS  Google Scholar 

  16. Yoshihara, F., Fuse, T., Ashhab, S., Kakuyanagi, K., Saito, S., Semba, K.: Superconducting qubit-oscillator circuit beyond the ultrastrong-coupling regime. Nature Phys. 13, 44 (2017)

    Article  ADS  Google Scholar 

  17. Ashhab, S., Johansson, J.R., Zagoskin, A.M., Nori, F.: Two-level systems driven by large-amplitude fields. Phys. Rev. A 75, 063414 (2007)

    Article  ADS  Google Scholar 

  18. Cao, X., You, J.Q., Zheng, H., Kofman, A.G., Nori, F.: Dynamics and quantum Zeno effect for a qubit in either a low-or high-frequency bath beyond the rotating-wave approximation. Phys. Rev. A 82, 022119 (2010)

    Article  ADS  Google Scholar 

  19. Hausinger, J., Grifoni, M.: An analytical treatment of the ultrastrong coupling regime. Phys. Rev. A 83, 030301 (2011)

    Article  ADS  Google Scholar 

  20. Agarwal, S., Hashemi Rafsanjani, S.M., Eberly, J.H.: Tavis-Cummings model beyond the rotating wave approximation: Quasidegenerate qubits. Phys. Rev. A 85, 043815 (2012)

    Article  ADS  Google Scholar 

  21. Niemczyk, T., Deppe, F., Huebl, H., Menzel, E.P., Hocke, F., Schearz, M.J., Garcia-Ripoll, J.J., Zueco, D., Hummer, T., Solano, E., Marx, A., Gross, R.: Circuit quantum electrodynamics in the ultrastrong-coupling regime. Nature Phys. 6, 772 (2010)

    Article  ADS  Google Scholar 

  22. Ashhab, S., Nori, F.: Qubit-oscillator systems in the ultrastrong-coupling regime and their potential for preparing nonclassical states. Phys. Rev. A 81, 042311 (2010)

    Article  ADS  Google Scholar 

  23. Cao, X., You, J.Q., Zheng, H., Nori, F.: A qubit strongly coupled to a resonant cavity: asymmetry of the spontaneous emission spectrum beyond the rotating wave approximation. New. J. Phys. 13, 073002 (2011)

    Article  ADS  Google Scholar 

  24. Cao, X., Ai, Q., Sun, C.P., Nori, F.: The transition from quantum Zeno to anti-Zeno effects for a qubit in a cavity by varying the cavity frequency. Phys. Lett. A 376, 349–357 (2012)

    Article  ADS  MATH  Google Scholar 

  25. Stassi, R., Ridolfo, A., Di Stefano, O., Hartmann, M.J., Savasta, S.: Spontaneous conversion from virtual to real photons in the ultrastrong-coupling regime. Phys. Rev. Lett. 110, 243601 (2013)

    Article  ADS  Google Scholar 

  26. Stassi, R., Savasta, S., Garziano, L., Spagnolo, B., Nori, F.: Output Field-Quadrature Measurements and Squeezing in Ultrastrong Cavity-QED. New. J. Phys. 18, 123005 (2016)

    Article  ADS  Google Scholar 

  27. Carusotto, I., De Liberato, S., Gerace, D., Ciuti, C.: Back-reaction effects of quantum vacuum in cavity quantum electrodynamics. Phys. Rev. A 85, 023805 (2012)

    Article  ADS  Google Scholar 

  28. Garziano, L., Ridolfo, A., Stassi, R., Di Stefano, O., Savasta, S.: Switching on and off of ultrastrong light-matter interaction: Photon statistics of quantum vacuum radiation. Phys. Rev. A 88, 063829 (2013)

    Article  ADS  Google Scholar 

  29. Huang, J.F., Law, C.K.: Photon emission via vacuum-dressed intermediate states under ultrastrong coupling. Phys. Rev. A 89, 033827 (2014)

    Article  ADS  Google Scholar 

  30. Garziano, L., Stassi, R., Macrì, V., Kockum, A.F., Savasta, S., Nori, F.: Multiphoton quantum Rabi oscillations in ultrastrong cavity QED. Phys. Rev. A 92, 063830 (2015)

    Article  ADS  Google Scholar 

  31. Garziano, L., Macrì, V., Stassi, R., Di Stefano, O., Nori, F., Savasta, S.: One photon can simultaneously excite two or more atoms. Phys. Rev. Lett. 117, 043601 (2016)

    Article  ADS  Google Scholar 

  32. Chen, Q.H., Yang, Y., Liu, T., Wang, K.L.: Entanglement dynamics of two independent Jaynes–Cummings atoms without the rotating-wave approximation. Phys. Rev. A 82, 052306 (2010)

    Article  ADS  Google Scholar 

  33. Larson, J.: Absence of vacuum induced Berry phases without the rotating wave approximation in cavity QED. Phys. Rev. Lett. 108, 033601 (2012)

    Article  ADS  Google Scholar 

  34. Garziano, L., Stassi, R., Ridolfo, A., Di Stefano, O., Savasta, S.: Vacuum-induced symmetry breaking in a superconducting quantum circuit. Phys. Rev. A 90, 043817 (2014)

    Article  ADS  Google Scholar 

  35. Romero, G., Ballester, D., Wang, Y.M., Scarani, V., Solano, E.: Ultrafast quantum gates in circuit QED. Phys. Rev. Lett. 108, 120501 (2012)

    Article  ADS  Google Scholar 

  36. Wang, Y.D., Chesi, S., Loss, D., Bruder, C.: One-step multiqubit Greenberger–Horne–Zeilinger state generation in a circuit QED system. Phys. Rev. B 81, 104524 (2010)

    Article  ADS  Google Scholar 

  37. Liu, X., Fang, G.Y., Liao, Q.H., Liu, S.T.: Fast multiqubit phase gate in circuit QED beyond the rotating-wave approximation. Phys. Rev. A 90, 062330 (2014)

    Article  ADS  Google Scholar 

  38. Quintana, C.M., Petersson, K.D., McFaul, L.W., Srinivasan, S.J., Houck, A.A., Petta, J.R.: Cavity-mediated entanglement generation via landau-zener interferometry. Phys. Rev. Lett. 110, 173603 (2013)

    Article  ADS  Google Scholar 

  39. Deng, C., Orgiazzi, J.L., Shen, F., Ashhab, S., Lupascu, A.: Observation of Floquet states in a strongly driven artificial atom. Phys. Rev. Lett. 115, 133601 (2015)

    Article  ADS  Google Scholar 

  40. Yang, C.P., Su, Q.P., Zheng, S.B., Nori, F.: Entangling superconducting qubits in a multi-cavity system. New. J. Phys. 18, 013025 (2016)

    Article  ADS  Google Scholar 

  41. Wei, J., Norman, E.: Lie algebraic solution of linear differential equations. J. Math. Phys. 4, 575 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Pritchard, J.D., Isaacs, J.A., Beck, M.A., McDermott, R., Saffman, M.: Hybrid atom-photon quantum gate in a superconducting microwave resonator. Phys. Rev. A 89, 010301 (2014)

    Article  ADS  Google Scholar 

  43. Wu, C.W., Han, Y., Li, H.Y., Deng, Z.J., Chen, P.X., Li, C.Z.: Fast quantum phase gate in a small-detuning circuit QED model. Phys. Rev. A 82, 014303 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China under Grant No. 2013CBA01702, and the National Natural Science Foundation of China under Grant Nos. 61377016, 61575055, 11104049, 61601196 and 10974039, and Specialized Research Fund for the Doctoral Program of Higher education (Grant 20102302120009) and the Program for New Century Excellent Talents in University (NCET-12-0148) and Doctoral Foundation of University of Jinan Grant No. XBS1637.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shutian Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Liu, X., Liao, Q. et al. One-step quantum phase gate in the ultrastrong coupling regime of circuit QED. Quantum Inf Process 16, 214 (2017). https://doi.org/10.1007/s11128-017-1642-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1642-7

Keywords