Skip to main content
Log in

Cryptanalysis of a multiparty quantum key agreement protocol based on commutative encryption

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Recently, Sun et al. (Quantum Inf Process 15(5):2101–2111, 2016) proposed an efficient multiparty quantum key agreement protocol based on commutative encryption. The aim of this protocol is to negotiate a secret shared key among multiple parties with high qubit efficiency as well as security against inside and outside attackers. The shared key is the exclusive-OR of all participants’ secret keys. This is achieved by applying the rotation operation on encrypted photons. For retrieving the final secret key, only measurement on single states is needed. Sun et al. claimed that assuming no mutual trust between participants, the scheme is secure against participant’s attack. In this paper, we show that this is not true. In particular, we demonstrate how a malicious participant in Sun et al.’s protocol can introduce “a” final fake key to target parties of his choice. We further propose an improvement to guard against this attack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ateniese, G., Giuseppe, M., Tsudik, G.: New multiparty authentication services and key agreement protocols. IEEE J. Sel. Areas Commun. 18(4), 628–639 (2000)

    Article  Google Scholar 

  2. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory 22, 644–654 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  3. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484–1509 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Zhou, N., Zeng, G., Xiong, J.: Quantum key agreement protocol. Electron. Lett. 40(18), 1149 (2004)

    Article  Google Scholar 

  5. Tsai, C., Hwang, T.: On Quantum Key Agreement Protocol. R.O.C, Technical Report, C-S-I-E, NCKU, Taiwan (2009)

  6. Huang, W., Wen, Q.Y., Liu, B., Gao, F., Sun, Y.: Quantum key agreement with EPR pairs and single particle measurements. Quantum Inf. Process. 13(3), 649–663 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Shen, D.S., Ma, W.P., Wang, L.L.: Two-party quantum key agreement with four-qubit cluster states. Quantum Inf. Process. 13, 2313 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Chong, S.K., Hwang, T.: Quantum key agreement protocol based on BB84. Opt. Commun. 283, 1192–1195 (2010)

    Article  ADS  Google Scholar 

  9. Chong, S.K., Tsai, C.W., Hwang, T.: Improvement on “quantum key agreement protocol with maximally entangled states”. Int. J. Theor. Phys. 50(6), 1793–1802 (2011)

    Article  MATH  Google Scholar 

  10. Sun, Z., Huang, H.J., Wang, P.: Efficient multiparty quantum key agreement protocol based on commutative encryption. Quantum Inf. Process. 15(5), 2101–2111 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Sun, Z., Yu, J., Wang, P.: Efficient multiparty quantum key agreement by cluster states. Quantum Inf. Process. 15(1), 373–384 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Liu, B., Gao, F., Huang, W., Wen, Q.Y.: Multiparty quantum key agreement with single particles. Quantum Inf. Process. 12(4), 1797–1805 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Sun, Z., Wang, B., Li, Q., Long, D.: Improvements on multiparty quantum key agreement with single particles. Quantum Inf. Process. 12, 3411 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Kanamori, Y., Yoo, S.M., Gregory, D.A., Sheldon, F.T.: Authentication protocol using quantum superposition states. Int. J. Netw. Secur. 9(2), 101–108 (2009)

    Google Scholar 

  15. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5633–5638 (2000)

    Article  ADS  Google Scholar 

  16. Xu, G.-B., Wen, Q.-Y., Gao, F., Qin, S.-J.: Novel multiparty quantum key agreement protocol with GHZ states. Quantum Inf. Process. 13(12), 2587–2594 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Karimipour, V., Asoudeh, M.: Quantum secret sharing and random hopping: using single states instead of entanglement. Phys. Rev. A 92(3), 030301 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  18. Bacon, D.: Decoherence, control, and symmetry in quantum computers (2003). arXiv:quant-ph/0305025

Download references

Acknowledgements

The authors gratefully appreciate the anonymous referees for their valuable comments and suggestions that help to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziba Eslami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohajer, R., Eslami, Z. Cryptanalysis of a multiparty quantum key agreement protocol based on commutative encryption. Quantum Inf Process 16, 197 (2017). https://doi.org/10.1007/s11128-017-1647-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1647-2

Keywords

Navigation