Abstract
In this work, we investigate the quantum-memory-assisted entropic uncertainty relation in a two-qubit Heisenberg XX model with inhomogeneous magnetic field. It has been found that larger coupling strength J between the two spin-chain qubits can effectively reduce the entropic uncertainty. Besides, we observe the mechanics of how the inhomogeneous field influences the uncertainty, and find out that when the inhomogeneous field parameter \(b<1\), the uncertainty will decrease with the decrease of the inhomogeneous field parameter b, conversely, the uncertainty will increase with decreasing b under the condition that \(b>1\). Intriguingly, the entropic uncertainty can shrink to zero when the coupling coefficients are relatively large, while the entropic uncertainty only reduces to 1 with the increase of the homogeneous magnetic field. Additionally, we observe the purity of the state and Bell non-locality and obtain that the entropic uncertainty is anticorrelated with both the purity and Bell non-locality of the evolution state.





Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Heisenberg, W.: The actual content of quantum theoretical kinematics and mechanics. Z. Phys. 43, 172 (1927)
Holger, F.H., Shigeki, T.: Violation of local uncertainty relations as a signature of entanglement. Phys. Rev. A 68, 032103 (2003)
Bialynicki-Birula, I.: Rényi entropy and the uncertainty relations. AIP Conf. Proc. 889, 52 (2006)
Kennard, E.H.: Zur Quantenmechanik einfacher Bewegungstypen. Z. Phys. 44, 326 (1927)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Robertson, H.P.: The uncertainty principle. Phys. Rev. 34, 163 (1929)
Deutsch, D.: Uncertainty in quantum measurements. Phys. Rev. Lett. 50, 631–633 (1983)
Renes, J.M., Boileau, J.C.: Physical underpinnings of privacy. Phys. Rev. A 78, 032335 (2008)
Wild, M.M., Renes, J.M.: In: Proceeding of International Symposium on Information Theory IEEE, pp. 334–338. Cambridge, Masschusetts (2012)
Kraus, K.: Complementary observables and uncertainty relations. Phys. Rev. D 35, 3070 (1987)
Maassen, H., Uffink, J.B.M.: Generalized entropic uncertainty relations. Phys. Rev. Lett. 60, 1103 (1988)
Berta, M., Christandl, M., Colbeck, R., Renes, J.M., Renner, R.: The uncertainty principle in the presence of quantum memory. Nat. Phys. 6, 659–662 (2010)
Kim, Y.H., Shih, Y.: Experimental realization of popper’s experiment: Violation of the uncertainty principle? Found. Phys. 29, 1849 (1999)
Tomamichel, M., Renner, R.: Uncertainty relation for smooth entropies. Phys. Rev. Lett. 106, 110506 (2011)
Hu, M.L., Fan, H.: Competition between quantum correlations in the quantum-memory-assisted entropic uncertainty relation. Phys. Rev. A 87, 022314 (2013)
Coles, P.J., Colbeck, R., Yu, L., Zwolak, M.: Uncertainty relations from simple entropic properties. Phys. Rev. Lett. 108, 210504 (2012)
Wang, D., Ming, F., Huang, A.J., Sun, W.Y., Shi, J.D., Ye, L.: Exploration of quantum-memory-assisted entropic uncertainty relations in a noninertial frame. Laser Phys. Lett. 14, 055205 (2017)
Huang, A.J., Shi, J.D., Wang, D., Ye, L.: Steering quantum-memory-assisted entropic uncertainty under unital and nonunital noises via filtering operations. Quantum Inf. Process. 16, 46 (2017)
Mario, B., Matthias, C., Roger, C., Renato, R.: The uncertainty principle in the presence of quantum memory. Nat. Phys. 6, 659–662 (2010)
Pati, A.K., Wilde, M.M., Devi, A.R.U., Rajagopal, A.K.: Quantum discord and classical correlation can tighten the uncertainty principle in the presence memory. Phys. Rev. A 86, 042105 (2012)
Hu, M.L., Fan, H.: Upper bound and shareability of quantum discord based on entropic uncertainty relations. Phys. Rev. A 88, 014105 (2013)
Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A 34, 6899 (2001)
Liu, S., Mu, L.Z., Fan, H.: Entropic uncertainty relations for multiple measurements. Phys. Rev. A. 91, 042133 (2015)
Xiao, Y.L., et al.: Strong entropic uncertainty relations for multiple measurements. Phys. Rev. A 93, 042125 (2016)
Asoudeh, M., Karimipour, V.: Thermal entanglement of spins in an inhomogeneous magnetic field. Phys. Rev. A 71, 022308 (2005)
Zhang, G.F., Li, S.S.: Thermal entanglement in a two-qubit Heisenberg XXZ spin chain under an inhomogeneous magnetic field. Phys. Rev. A 72, 034302 (2005)
Liang, Q.: Quantum correlations in a two-qubit Heisenberg XX model under intrinsic decoherence. Commun. Theor. Phys. 60, 391 (2013)
Jonckheere, E., Langbein, F.C., Schirmer, S.G.: Information transfer fidelity in spin networks and ring-based quantum routers. Quantum Inf. Process. 14, 4751 (2015)
Schirmer, S.G., Langbein. F.C.: Characterization and control of quantum spin chains and rings. In: 2014 6th International Symposium on Communications, Control and Signal Processing (ISCCSP), pp. 615–619. (2014)
Hammerer, K., Vidal, G., Cirac, J.I.: Characterization of nonlocal gates. Phys. Rev. A. 66, 062321 (2002)
Fardin, K., Seyed, J.A., Hamidreza, M.: Effect of spin-orbit interaction on entanglement of two-qubit Heisenberg XYZ systems in an inhomogeneous magnetic field. Phys. Rev. A 77, 042309 (2008)
Man’ko, V.I., Marmo, G., Porzio, A., Solimeno, S., Ventriglia, F.: Homodyne estimation of quantum state purity by exploiting the covariant uncertainty relation. Phys Scripta 83, 4 (2011)
Xu, Z.Y., Yang, W.L., Feng, M.: Quantum-memory-assisted entropic uncertainty relation under noise. Phys. Rev. A 86, 012113 (2012)
Ghosh, S., Kar, G., Sen, A., Sen, U.: Mixedness in the Bell violation versus entanglement of formation. Phys. Rev. A 64, 044301 (2001)
Yao, Y., Li, H.W., Yin, Z.Q., Chen, W., Han, Z.F.: Bell violation versus geometric measure of quantum discord and their dynamical behavior. Eur. Phys. J. D 66, 295 (2012)
Acknowledgements
This work was supported by the National Science Foundation of China under Grant Nos. 11575001 and 61601002 and Anhui Provincial Natural Science Foundation under Grant No. 1508085QF139.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Huang, AJ., Wang, D., Wang, JM. et al. Exploring entropic uncertainty relation in the Heisenberg XX model with inhomogeneous magnetic field. Quantum Inf Process 16, 204 (2017). https://doi.org/10.1007/s11128-017-1657-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-017-1657-0